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Abstract

We examine the notion of symmetry in quantum field theory from a fundamental representation
theoretic point of view. This leads us to a generalization expressed in terms of quantum groups and
braided categories. It also unifies the conventional concept of symmetry with that of exchange statis-
tics and the spin–statistics relation. We show how this quantum group symmetry is reconstructed
from the traditional (super) group symmetry, statistics and spin–statistics relation.

The old question of extending the Poincaré group to unify external and internal symmetries
(solved by supersymmetry) is reexamined in the new framework. The reason why we should allow
supergroups in this case becomes completely transparent. However, the true symmetries are not
expressed by groups or supergroups here but by ordinary (not super) quantum groups. We show in
this generalized framework that supersymmetry remains the most general unification of internal and
space–time symmetries provided that all particles are either bosons or fermions. Finally, we demon-
strate with some examples how quantum geometry provides a natural setting for the construction
of super-extensions, superspaces, super-derivatives, etc.
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1. Introduction

The question was raised a long time ago whether the external (space–time) and internal
symmetries of the quantum field theories with which we describe nature could be part of a
larger symmetry group that is not simply a direct product of the two.
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For relativistic quantum mechanical theories the space–time symmetry group is the uni-
versal coverP̂ of the Poincaré groupP . (For simplicity we refer toP̂ in the following as
the Poincaré group.) Thus, a unification of symmetries in the above-mentioned sense would
imply a solution to the following problem: Is there a larger groupSP̂ which contains the
Poincaré groupP̂ , but is not simply a direct product of̂P and some other group? That is,
is there a groupSP̂ with an inclusion

P̂ ↪→ SP̂ such thatSP̂ �= P̂ ×G (1)

for any groupG?
While mathematical solutions to the problem in this simple form can be easily found, they

might not be of physical relevance. One can enlargeP̂ , e.g., by adding scale transformations.
However, scale invariance is not a feature of the physically relevant quantum field theories
of fundamental interactions. One therefore needs to impose additional constraints onSP̂

in order for it to be physically interesting. Precisely such an analysis was carried out in
the context of scattering theory in the 1960s, and brought into its most comprehensive
form by Coleman and Mandula[1]. They were able to show that under reasonable physical
assumptions the Lie algebra version of problem(1) has no solution: There is no such
extension of the Poincaré Lie algebra.

Only a few years later, however, supersymmetry emerged as a physically acceptable
solution to the extension problem in a modified form[2,3]. One needs to extend the concept
of symmetry from that of groups and Lie algebras to that of supergroups and super-Lie
algebras. Then, a physically acceptable extension of the Poincaré Lie algebra exists: The
super-Poincaré Lie algebra. The analysis of Coleman and Mandula was repeated by Haag
et al.[4] for the super-Lie algebra case. They found the super-Poincaré Lie algebra (in its
versions with various numbers of supersymmetries and additional central charges) to be the
only physically acceptable extension of the Poincaré Lie algebra.

Is this the end of the story? Can we go beyond supergroups and supersymmetry? And
why “super” in the first place?

In the following we try to answer these questions from a categorical (or representation
theoretic) point of view. This leads us to a unified view of symmetry and statistics through
braided categories and quantum groups (Section 2.1). This generalized notion of symmetry
then provides the natural framework for posing the analogue of the extension problem(1)
(Section 2.2). In Section 3, we introduce the reader to the necessary essentials from quantum
group theory and provide some elementary examples.Section 4.1is devoted to reconstruct-
ing the quantum group symmetry underlying ordinary quantum field theory. As it turns out
this is not the ordinary Poincaré group but a closely related quantum group. The recon-
struction is then generalized (Section 4.3) and applied to the extension problem (Section
4.4). The latter section provides the link between the superextension problem and our gen-
eralized extension problem. InSection 5, we pursue the question of whether (for ordinary
QFT) there is something “beyond supersymmetry”. The answer is “No” and indeed the
main mathematical result here is that all possible extensions (in the case of Bose–Fermi
statistics) can be obtained from groups or supergroups.

As it turns out, our setting also provides us with new mathematical tools for dealing
with supersymmetry. These are the tools of quantum geometry[5]. By quantum geometry
we mean here the non-commutative geometry whose manifold-objects are algebras and
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whose group-objects are quantum groups (Hopf algebras). In quantum geometry there are
generalizations of principal bundles, homogeneous spaces, differential forms, etc. We give
examples inSection 6of how all this can be applied to supersymmetry and facilitates super-
symmetric constructions. These include semidirect superextensions, the OSp-supergroups,
super-spheres and the super-Poincaré group.

Proofs for mathematical statements are in general omitted as they are either known or
straightforward. In the former case either a reference is given or they can be found in text
books on quantum groups. An exception formsTheorem 5.1whose proof is explicitly given.

We work throughout over the field of complex numbers.

2. The generalized extension problem

2.1. Why quantum group symmetries?

With the insufficiency of the group context in mind, we search for a more general but
natural framework for the notion of symmetry and the extension problem. We are hereby
guided by the categorical (i.e., representation theoretic) aspects of quantum field theory.

What are the “objects” that we deal with? States, fields, operators, Lagrangians, etc. all
live in vector spaces overR orC. Furthermore, they all carry actions of the Poincaré groupP̂

or some larger symmetry group of the theory. That is, these vector spaces are representations
of the symmetry group. Furthermore, there are maps between the representations which are
required to be intertwiners, i.e., they commute with the group action. For example, an
invariant operator can be viewed as such a map between states. What we have described so
far, objects and maps between them, is essentially what makes acategory. In this case, it is
the category of representations of the symmetry group.

An essential operation in quantum field theory is the formation of tensor products of
representations, e.g., to form a two-particle state out of two one particle states. This gives
additional structure to the category of representations of the symmetry group and makes it
into amonoidal category. In fact, this monoidal category carries all the information about
the representation theory and we can forget about the group itself altogether.

We already know that we need to generalize the symmetry concept beyond that of groups
to allow for supersymmetry. However, replacing groups by supergroups leads to monoidal
categories as well. Conversely, given a monoidal category we require no knowledge about
an underlying group or supergroup to perform all the representation theoretic operations
necessary in quantum field theory. Thus, it appears natural to define a generalized concept
of symmetry simply by that of a monoidal category.

However, there is a theorem of quantum group theory that states that for any monoidal
category (with duals) there is a Hopf algebra so that the monoidal category is its category of
representations.1 This is called Tannaka–Krein reconstruction (see[5]). In fact, this gives
rise to a one-to-one correspondence between monoidal categories and Hopf algebras. Thus,
the abstract generalization to any monoidal category gives us back a more concrete object

1 We use the word “representation” for a Hopf algebra here and in the following to mean “comodule”. See
Section 3for more details.
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that encodes the symmetries—a Hopf algebra. In the group case, this Hopf algebra is the
commutative Hopf algebra of functions on the group.2 In the supergroup case the relation
to the corresponding Hopf algebra is slightly more complicated (seeSection 4).

We can go on to exploit our categorical point of view further to encompass the notion of
particle statistics as well. In fact, this turns out to beessentialas symmetry and statistics
become inseparably linked in the generalized Hopf algebraic context.

A bit less obvious, it is also an essential ingredient of quantum field theory to have for two
representationsV andW an interwinerV ⊗W → W ⊗ V . For two one-particle states this
interwiner tells us what the exchange statistics of the particles is. For Bosons this would be
v⊗w �→ w⊗ v while for Fermions we would have an extra minus signv⊗w �→ −w⊗ v.
In general, the definition of such an interwiner for any pair of representations is called a
braiding. Thus, the objects of a quantum field theory live in abraided monoidal category.
This encodes now both, the symmetries and the statistics of the theory. Note that this concept
allows for more general statistics than Bose and Fermi, see[6] for a discussion.

The braiding on the category as a category of representations yields an extra structure
on the corresponding Hopf algebra via Tannaka–Krein reconstruction. This is called a
coquasitriangular structure. Again, this gives rise to a one-to-one correspondence between
braided monoidal categories and coquasitriangular Hopf algebras. In the following, we use
the termquantum groupto denote coquasitriangular Hopf algebras.

Importantly, it is not possible to combine arbitrary Hopf algebras with arbitrary braidings.
To the contrary, for a given Hopf algebra the set of possible braidings on its representation
category (encoded in the coquasitriangular structure) is usually very limited. Thus, symme-
try and statistics cannot be viewed as separate entities in general. We subsume both under
a generalized notion of symmetry which replaces ordinary groups by quantum groups. Un-
surprisingly, also supersymmetry gives rise to a particular example of such a generalized
symmetry, as we shall discuss inSection 4.4.

2.2. The quantum group extension problem

Let us examine the extension problem(1) from the same abstract representation theoretic
point of view that we have employed in the previous section.

Suppose we wish to embed a groupG into a larger groupG′. That is, we look for an
inclusionG ↪→ G′. For the moment suppose we are just given a group homomorphism
G→ G′. For the representations this means that we can pull back a representation ofG′ to
one ofG. In fact, this gives rise to a (monoidal) functor between the (monoidal) categories
of representations of the groups in the opposite directionG′

M→ GM. That is, for every
representation ofG′ we get one ofG and for every interwiner between representations ofG′
we get one between representations ofG. Conversely, given this functor we can reconstruct
the group homomorphism. Indeed, there is a one-to-one correspondence between such
functors and group homomorphisms.

2 We are somewhat sloppy here and in the following concerning functional analytic questions such as the choice
of class of functions on a space or the necessity to complete tensor products, consider multiplier algebras, etc. The
treatment of these questions would unnecessarily complicate the discussion and is irrelevant for the purposes of
this paper.
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Generalizing as in the previous section to the case of arbitrary monoidal categories we
still have such a correspondence. It is between functors and Hopf algebra homomorphisms.
This time, both arrows point in the same direction. Thus, the generalization of the group
homomorphismG→ G′ is a Hopf algebra homomorphismH ′ → H . We recover the group
case from the Hopf algebra case with the function Hopf algebrasH = C(G),H ′ = C(G′).
The injectivity of the group homomorphism corresponds to the surjectivity of the Hopf
algebra homomorphism. Thus, the problem of finding a “larger” groupG′ in which to
embed a groupG generalizes to the problem of finding a “larger” Hopf algebraH ′ with a
surjectionH ′�H to the given Hopf algebraH .

While in the group extension problem(1) the exchange statistics is not explicitly men-
tioned and only enters separately in the physical conditions we can do better with our
generalized setting ofSection 2.1. To include the statistics we only have to consider the
braiding that encodes it as well. Thus, we have braided monoidal categories instead of just
monoidal categories. For a (monoidal) functor between such categories we impose the nat-
ural condition of being braided, i.e., of commuting with the braiding. This exactly expresses
the condition that the statistics is preserved by the extension. We then have a correspon-
dence between braided monoidal functors and homomorphisms of coquasitriangular Hopf
algebras (quantum groups). Thus, the extension problem becomes that of finding a “larger”
quantum groupH ′ with a surjection (of coquasitriangular Hopf algebras)H ′�H to a given
quantum group.

The analogue of the condition that the “larger” group not be a direct product corresponds to
the “larger” quantum group not being a tensor product. Thus, we can formulate the quantum
group generalization of(1) as follows: Denoting the relevant quantum group version of the

Poincaré group bŷP
′
,3 find a quantum groupSP̂′ and a surjection

SP̂′� P̂′ such thatSP̂′ �= P̂′ ⊗ G (2)

for any quantum groupG.

3. Essentials from quantum group theory

In this section, we introduce a few essential elements of quantum group theory and give
some elementary examples. The latter serve to acquaint the reader with the formalism and
form at the same time the basis for supersymmetric examples inSection 6. Most of the
material in this section is text book knowledge. A good reference is Majid’s book[5], in
particular for the braided aspects. For the material on specific groups and Lie algebras see,
e.g.[7].

We assume the reader to be familiar with the notions of Hopf algebra, module, comodule,
and Hopf algebra pairing. We use the notations�, ε,S for coproduct, counit and antipode
of a Hopf algebra. We use Sweedler’s notation (with implicit summation)�a = a(1)⊗a(2)
for coproducts and a similar notationv �→ v(1) ⊗ v(2) for left coactions.

3 P̂′ encodes now the Poincaré symmetry as well as Bose–Fermi statistics and the spin–statistics relation. It is
derived inSection 4.1.
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A braided monoidal category is a monoidal category (i.e., a collection of objects and
maps with a tensor product and certain compatibility conditions) so that for any two objects
V,W there is an invertible mapψ : V ⊗W → W ⊗ V (thebraiding). The collection of
ψ ’s also has to satisfy certain compatibility conditions. A braiding is calledsymmetricif
ψ = ψ−1.

A coquasitriangularstructureR : H⊗H → C on a Hopf algebraH provides a braiding
on its category of left comodules via

ψ(v ⊗ w) = R(w(1) ⊗ v(1))w(2) ⊗ v(2).
If R(a(1) ⊗ b(1))R(b(2) ⊗ a(2)) = ε(a)ε(b), thenR is calledcotriangularand the induced
braiding is symmetric.

Dually, aquasitriangularstructureR ∈ H ⊗H on a Hopf algebraH provides a braiding
on its category of left modules via

ψ(v ⊗ w) = R2 � w ⊗ R1 � v
with R1 ⊗ R2 := R (summation implied). IfR−1 = R2 ⊗ R1, thenR is calledtriangular
and the induced braiding is symmetric.

As alluded to above, a groupG gives rise to a Hopf algebra as follows. Take the algebra
of functionsC(G) onG and equip it with a coproduct defined by(�f )(g, h) = f (gh)
for f ∈ C(G) andg, h ∈ G using the identificationC(G × G) ∼= C(G) ⊗ C(G). Counit
and antipode are given byε(f ) = f (e) and (Sf )(g) = f (g−1), wheree denotes the
unit element of the group. Note that the Hopf algebraC(G) naturally carries the trivial
cotriangular structureR = ε ⊗ ε which encodes the trivial braidingv ⊗ w �→ w ⊗ v.

For matrix groups the corresponding Hopf algebra can be constructed rather explicitly.
Consider the coalgebra with basis{tij } for i, j ∈ {1, . . . , n}, with coproduct�tij = ∑

k tik ⊗
tkj and counitε(tij ) = δij . It is called then-dimensionalmatrix coalgebraand is dual to
the algebra ofn × n-matricesMn. The free commutative bialgebra generated by thetij is
the “prototype” of the function Hopf algebra of a matrix group. More precisely, a matrix
group that is a subalgebra ofMn determined by polynomial constraints corresponds to a
Hopf algebra which is a quotient of the described bialgebra by relations corresponding to
the constraints.

From here on we adopt the convention that we denote the Hopf algebra of functions on
a groupG by G. The class of functions we usually choose are the representative functions.
These are the functions that arise as matrix elements of finite-dimensional representations.
Furthermore we sometimes consider aconjugationin this context. This is nothing but
ordinary complex conjugation.

Example 3.1. Consider the group SU(2). Its Hopf algebraSU(2) of representative func-
tions is generated by the matrix coalgebra{tij } with i, j ∈ {1

2,−1
2} and relation (with the

notation± for ±1
2)

t−−t++ − t−+t+− = 1.

SU(2) has a (Peter–Weyl) basis{t lij } with l ∈ 1
2N0 and i, j ∈ {−l,−l + 1, . . . , l} with

t000 = 1 andt1/2ij = tij . Coproduct, counit, antipode and conjugation in this basis are given
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by

�tlmn =
∑
k

t lmk ⊗ t lkn, ε(t lmn) = δmn, t̄ lmn = St lnm = (−1)n−mtl−m,−n.

Example 3.2. Consider the group Spin(3,1) = SL(2,C) which is the double cover of the
Lorentz group SO(3,1). Its Hopf algebraSpin(3,1) of representative functions is the tensor
product of two copies ofSU(2) whose generators we denote by{tij } and{t̄ij }. However its
conjugation is different, as indicated by the notation for the generators. A Peter–Weyl basis4

is thus given by{t lij , t̄ lij }.
Let {σµ} denote the standard Pauli matrices

σ 0 :=
(

1 0

0 1

)
, σ 1 :=

(
0 1

1 0

)
,

σ 2 :=
(

0 −i

i 0

)
, σ 3 :=

(
1 0

0 −1

)
.

Define the 2× 2 matrixT of generators by

T :=
(
t−− t−+
t+− t++

)
,

and the elements

Λµν := 1
2tr(σµT σνT †),

whereT † is transposition of the matrix composed with conjugation of its elements.{Λµν}
generates precisely the sub-Hopf algebraSO(3,1) of functions on the Lorentz group. Note
thatΛ̄µν = Λµν .

The surjectionSpin(3,1)� SU(2) corresponding to the injection SU(2) ↪→ Spin(3,1)
is simply given byt lij �→ t lij andt̄ lij �→ t̄ lij . (Note the different meaning of the conjugation in
source and target.)

Not only a Lie group, but also a Lie algebrag gives rise to a Hopf algebra. More precisely,
its universal envelopeU(g) can be made into a Hopf algebra. This is achieved by equipping
the Lie algebra generators with theprimitivecoproduct�η = η⊗1+1⊗η. This determines
a coproduct on the whole ofU(g). The counit is given byε(η) = 0 on the generators and
the antipode by Sη = −η. Note thatU(g) is cocommutative. Furthermore, we sometimes
consider a conjugation. Then the Lie algebra can be considered as the complexification of
a real Lie algebra with the given complex conjugation.

It is a remarkable fact of Hopf algebra theory that the Hopf algebras obtained from a Lie
group and its Lie algebra are dual to each other.

4 The term “Peter–Weyl basis” refers here to a decomposition in terms of irreducible finite-dimensional repre-
sentations and doesnot involve unitarity in any way.
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Example 3.3. Consider the Lie algebrasu2 with basisE,F,H and relations [H,E] = 2E,
[H,F ] = −2F , [E,F ] = H . Conjugation is given byH̄ = −H , Ē = −F , F̄ = −E. Its
universal enveloping Hopf algebraU(su2) is dually paired withSU(2) via

〈H, tlmn〉 = 2nδm,n, 〈E, tlmn〉 =
√
(l − n)(l + n+ 1)δm,n+1,

〈F, t lmn〉 =
√
(l + n)(l − n+ 1)δm,n−1.

Example 3.4. Consider the Lie algebraso3,1 with basisE,F,H, Ē, F̄ , H̄ . Apart from the
different conjugation (indicated in the basis) it has the relations ofsu2 ⊕ su2 in the obvious
way. The pairing ofU(so3,1) with Spin(3,1) is as inExample 3.3for the un-barred and
the same for the barred generators. The pairing between un-barred and barred generators is
zero.

For the elementsΛµν the pairing comes out as

〈X,Λµν〉 = 1
2tr(σµσ(X)σν), 〈X̄,Λµν〉 = 〈X,Λµν〉 ∀X ∈ {H,E,F },

where

σ(H) := −σ 3, σ (E) := 1
2(σ

1 − iσ 2), σ (F ) := 1
2(σ

1 + iσ 2).

The injectionsu2 ↪→ so3,1 corresponding by duality to the surjection ofExample 3.2is
given byE �→ E − F̄ , F �→ F − Ē,H �→ H − H̄ . It extends toU(su2) ↪→ U(so3,1).

The simplest example of a Hopf algebra with non-trivial cotriangular structure (i.e.,
implying non-trivial braiding) is the following one.

Example 3.5. Let Z′
2 be the Hopf algebra of functions onZ2. It has two elements 1, g with

relationg2 = 1, coproduct�g = g ⊗ g, counitε(g) = 1, and antipode Sg = g. We equip
it with the cotriangular structure determined byR(g ⊗ g) = −1.

Z′
2 is precisely the quantum group that generates the category ofZ2-graded vector spaces

as its category of comodules. A comoduleV of Z′
2 splits into a direct sumV0 ⊕ V1 of

even and odd part determined by the coactionv �→ g|v| ⊗ v. This is the natural setting for
supergroups and super-Lie algebras. We start with more general definitions.

A braided Hopf algebrais the analogue of a Hopf algebra in a braided category. That is,
it obeys the same axioms as an ordinary Hopf algebra except for the axiom of compatibility
between product and coproduct which is modified to

� ◦ · = (· ⊗ ·) ◦ (id ⊗ ψ ⊗ id) ◦ (�⊗�).
Definition 3.6. LetA be an algebra in a braided category.A is calledbraided commutative
if · = · ◦ ψ is an identity of mapsA⊗ A→ A.

Dually, letC be a coalgebra in a braided category.C is calledbraided cocommutativeif
� = ψ ◦� is an identity of mapsC → C ⊗ C.

Now, in the same way as ordinary Hopf algebras describe groups and enveloping alge-
bras,Z2-graded Hopf algebras (i.e., braided Hopf algebras in the category ofZ′

2-comodules)
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describe supergroups and super-Lie algebras. Thus supergroups are described byZ2-graded
commutative Hopf algebras and super-enveloping algebras byZ2-graded cocommutative
Hopf algebras. The latter case is more familiar. One usually considers super-Lie algebras.
Those give indeed rise to enveloping Hopf algebras precisely in the same way as ordi-
nary Lie algebras do, except that everything takes place in theZ2-graded category. Our
definition of supergroups might seem less familiar but is standard in the quantum groups
literature (see, e.g.[8] where evenq-deformations of supergroups were considered). It is
also much less complicated than analytically inspired definitions using auxiliary Grassmann
algebras.

In fact, one can generalize these considerations to arbitrary braiding employing the no-
tion of braided Hopf algebra mentioned above, see[5]. However, we shall limit ourselves
mostly to theZ2-graded case, occasionally generalizing to arbitrary symmetric braidings.
For non-symmetric braidings additional problems occur, most notably the absence of an
analogue ofProposition 3.10(as discussed inSection 4.3).

We are now ready to define the extension problems more precisely (disregarding for
now the requirement that the extension must not be a direct product, respectively, tensor
product). The conventional version(1), generalized to encompass, e.g., supergroups in the
above-mentioned sense can be formulated as follows.

Definition 3.7. Let H be a braided commutative Hopf algebra in a symmetric braided
category. Then, thetriangular group extension problemis the problem to find a braided
commutative Hopf algebraB in the category with a surjectionσ : B�H . Any suchB is
said to be asolutionof the problem.

In the ordinary group case the underlying category is just the category of vector spaces
and the braiding is simply the interchange of the tensor components.H is thus an
ordinary commutative Hopf algebra which encodes the algebra of functions on a group.
In the supergroup case the category is that ofZ2-graded vector spaces and the braid-
ing is the interchange with an additional minus sign if both components are odd. Thus,
H is a graded commutative Hopf algebra which encodes the algebra of functions on a
supergroup.

The quantum group extension problem(2) takes the following definition.

Definition 3.8. LetH be a coquasitriangular Hopf algebra. Then, thequantum group ex-
tension problemis the problem to find a coquasitriangular Hopf algebraAwith a surjection
π : A�H . Any suchA is said to be asolutionof the problem.

For the following discussion of reconstruction we require the analogue of a semidirect
product of groups for Hopf algebras. This is provided by the following theorem and its
variants. Their significance will become clear in the next section.

Theorem 3.9 (Majid [9,10]). Let H be a coquasitriangular Hopf algebra, B a braided Hopf
algebra in the braided categoryHM of left H-comodules. Then, there exists a Hopf algebra
B �H , called the bosonization of B, such that the category of left comodules ofB �H is
monoidal equivalent to the category of braided left comodules of B inHM.
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Explicitly,B �H is isomorphic toB ⊗H as a vector space. Its product, coproduct, and
antipode are given by

(b ⊗ h)(c ⊗ g) = R(c[1] ⊗ h(1))bc[2] ⊗ h(2)g,
�(b ⊗ h) = (b(1) ⊗ b(2)[1]h(1))⊗ (b(2)[2] ⊗ h(2)),
S(b ⊗ h) = R((SBb[2])[1] ⊗ (SH (b[1]h))(1))(SBb[2])[2] ⊗ (SH (b[1]h))(2)

for b, c ∈ B andh, g ∈ H . Here, the coaction of H on B is denoted byb �→ b[1] ⊗ b[2] .
Furthermore, there is a Hopf algebra surjectionπ : B�H�H defined byb⊗h �→ ε(b)h

and an injectioni : H ↪→ B �H defined byh �→ 1 ⊗ h such thatπ ◦ i = id. Conversely,
letπ : A�H be a Hopf algebra surjection. Then A is a bosonizationA = B�H for some
B if and only if there is an injectioni : H ↪→ A such thatπ ◦ i = id.

Proposition 3.10. In the context ofTheorem 3.9assume that H is cotriangular and that B is
braided commutative. Then,B�H inherits a cotriangular structure from H by pull-back, i.e.,

R((b ⊗ h)⊗ (c ⊗ g)) := RH (h⊗ g)ε(b)ε(c).
Furthermore the equivalence of categories ofTheorem 3.9becomes an equivalence of
braided categories in this way. In particular, B �H�H is a quantum group extension in
the sense ofDefinition 3.8.

For the pairing of bosonizations we need the following lemma.

Lemma 3.11. Let A be a coquasitriangular Hopf algebra and H a quasitriangular Hopf
algebra which are dually paired viaH ⊗ A → C. Let B be an A-comodule braided
Hopf algebra and D an H-module braided Hopf algebra such that they are dually paired
as algebra/coalgebra and coalgebra/algebra.5 Furthermore, we demand the compatibility
condition of action and coaction

〈h � d, b〉 = 〈h, b(1)〉〈d, b(2)〉 ∀h ∈ H, b ∈ B, d ∈ D.
Then the bosonizationsD �H andB � A are naturally dually paired via

〈d ⊗ h, b ⊗ a〉 := 〈d, b〉〈h, a〉 ∀h ∈ H, a ∈ A, b ∈ B, d ∈ D.

As an example of how the bosonization construction reduces to an ordinary semidi-
rect product for groups and Lie algebras we consider the Poincaré group and its Lie and
(enveloping) algebra as well as their pairing.

Example 3.12. In the context ofExample 3.2consider the Hopf algebraMink of (polyno-
mial) functions on the translation group of Minkowski space. It is generated by{xµ} as a
free commutative algebra with coproduct, antipode and conjugation

�xµ = xµ ⊗ 1 + 1 ⊗ xµ, Sxµ = −xµ, x̄µ = xµ.
5 Note that we take the ordinary pairing here and not the type of pairing usually employed in braided categories.

In particular, note thatB andD do not live in the same braided category.
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It is a (trivially braided)Spin(3,1)-comodule Hopf algebra via the coactionxµ �→ ∑
ν Λ

µν

⊗ xν .
The Hopf algebra of functionsPoinc on the covered Poincaré group is the bosonization

Mink � Spin(3,1). As an algebra it is the commutative algebra generated bySpin(3,1)
andMink. The coalgebra structure and antipode fortij is that ofSpin(3,1). The coproduct
and antipode forxµ are given by

�xµ = xµ ⊗ 1 +
∑
ν

Λµν ⊗ xν, Sxµ = −
∑
ν

(SΛµν)xν.

Note that the sub-Hopf algebra generated by{xµ,Λµν} is the uncovered Poincaré group
Mink � SO(3,1).

Example 3.13. In the context ofExample 3.4let tr4 denote the abelian Lie algebra of
translation generators in four dimensions with basis{Pµ} and real structurēPµ = Pµ.
Its universal enveloping Hopf algebraU(tr4) is a (trivially braided)U(so3,1)-module Hopf
algebra by the action

X � Pµ = 1

2

∑
ν

tr(σ νσ (X)σµ)P ν, X̄ � Pµ = X � Pµ ∀X ∈ {H,E,F }.

The semidirect product of the Lie algebras is the Poincaré Lie algebra. Correspondingly,
for the enveloping Hopf algebrasU(poinc) = U(tr4 � so3,1) = U(tr4)� U(so3,1).
U(tr4) andMink are dually paired via〈Pµ, xν〉 = δµν . As this pairing is compatible with

the action ofU(so3,1) and coaction ofSpin(3,1) in the sense ofLemma 3.11it induces a
pairing between the Hopf algebrasU(poinc) andPoinc.

4. Reconstruction of quantum group symmetry

4.1. Poincaré symmetry and Bose–Fermi statistics

Let us reconstruct the relevant braided monoidal category (and quantum group) for a
quantum field theory that is Poincaré symmetric, has Bose–Fermi statistics, and obeys the
spin–statistics theorem. In fact, we simplify the discussion slightly by only considering the
SU(2) subgroup ofP̂ since it exhibits already all the relevant features. We come back to the
full Poincaré group at the end. The construction proceeds in three “layers” corresponding,
respectively, to the statistics, the symmetry group, and the spin–statistics relation, seeFig. 1.

The first layer (the outermost box inFig. 1) is an underlyingZ2-grading. More precisely,
we consider the braided category ofZ2-graded vector spaces. This distinguishes Fermions
from Bosons and carries the Bose–Fermi statistics. Reconstructing the quantum group that
generates the category, we obtain the function Hopf algebraZ′

2 of the groupZ2, but with
the non-trivial cotriangular structure, described inExample 3.5. The cotriangular structure
provides the braiding

ψ(v ⊗ w) = (−1)|v|·|w|w ⊗ v,
which encodes Bose–Fermi statistics.
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Fig. 1. The three layers of the reconstruction of the quantum group symmetry. They correspond to successive
restrictions of categories.

The second layer (the intermediate solid box inFig. 1) is the symmetry group, in this
case SU(2). We wish to restrict our category ofZ2-graded vector spaces to those spaces
that are representations of the group SU(2) as well. Furthermore, we require the group
action to respect the grading. This means that we can view SU(2) as living in theZ2-graded
category itself. More precisely, taking the quantum group point of view, the correspond-
ing function Hopf algebraSU(2) is an object in the category. It is purely even under the
Z2-grading. The braided category which encodes both the Bose–Fermi statistics as well as
the SU(2)-symmetry is then the subcategory of comodules ofSU(2) inside the category
of Z2-graded vector spaces. However, according to the reconstruction theorem we can ex-
press the braided category as a category of representations of just one quantum group. We
are here precisely in the situation ofTheorem 3.9andProposition 3.10which tell us that
this quantum group is obtained fromZ′

2 andSU(2) by a kind of semidirect product, called
bosonizationSU(2)�Z′

2. In the case at hand this reduces just to the ordinary tensor product
SU(2) ⊗ Z′

2 sinceSU(2) is purely even, i.e., trivial as a representation ofZ′
2. Using the

basis ofSU(2) given inExample 3.1the tensor productSU(2)⊗Z′
2 has a basis{t lmn, t

l
mng}.

Its coquasitriangular structure is given by

R(t lmng
k ⊗ t l′m′n′gk

′
) = (−1)kk′δmnδm′n′ .

The third and final layer (the innermost solid box inFig. 1) consists of removing those
representations that have the wrong spin–statistics relation. We only allow representations
where either the spin-label is integer and theZ2-degree even or the spin-label non-integer and
the Z2-degree odd. The coaction for a spin-l representation thus must take the
form

vm �→
∑
n

t lmng
2l ⊗ vn.

Allowing only representations of this form is equivalent to restricting the Hopf algebra
SU(2) ⊗ Z′

2 to the sub-Hopf algebra spanned by{t lmng
2l}. More generally, restricting a

monoidal category to a monoidal subcategory corresponds by Tannaka–Krein reconstruction
exactly to restricting a Hopf algebra to a sub-Hopf algebra.
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By renaming the elementt lmng
2l with t lmnwe recognize that the Hopf algebra we arrive at is

nothing butSU(2) again. However, the coquasitriangular structure we obtain by restriction
fromSU(2)⊗Z′

2 is not the canonical (trivial) coquasitriangular structure ofSU(2). Instead,
it is given by

R(t lmn ⊗ t l′m′n′) = (−1)4ll ′δmnδm′n′ . (3)

To make this distinction clear we denote the new coquasitriangular Hopf algebra bySU′(2).
It is precisely the one that was already found in[6] by considering spin and statistics
symmetries directly.

The construction generalizes to double covers of space–time symmetry groups. Thus, as-
sume a given space–time symmetry groupGwhose universal cover (i.e., quantum mechan-
ically relevant symmetry) is a double coverĜ. Then, the function Hopf algebra decomposes
into a direct sumĜ = Ĝs ⊕ Ĝa with Ĝs = G of functions that are symmetric, respectively,
antisymmetric with respect to interchange of the sheets of the cover. As the direct sum is
a direct sum of coalgebras this introduces a grading on the representations which corre-
sponds precisely to spin (i.e., grading in integer versus half-integer spin). Assuming the usual
spin–statistics relation we obtain as aboveĜ itself as the relevant symmetry quantum group
but with the cotriangular structure of the following lemma. This generalizes(3). See also[6].

Lemma 4.1. Let H be a commutative Hopf algebra which isZ2-graded as an algebra into
a direct sum of subcoalgebrasH = H0 ⊕H1. Then

R(f ⊗ g) = (−1)|f ||g|ε(f )ε(g), (4)

where|f | is the degree of f with respect to the grading, defines a cotriangular structure
on H.

In particular, for the (covering) Lorentz groupSpin(3,1) and the full Poincaré group
Poinc the grading is given by|t lij | = |t̄ lij | = 2l (mod 2) and|xµ| = 0. We denote the

versions with the cotriangular structure(4) by Spin′(3,1) andPoinc′, respectively.

Remark 4.2. There did not seem to be any intrinsic reason to put theZ2-grading encod-
ing the Bose–Fermi statistics “below” the conventional symmetry group. The bosonization
appearing above really is just an ordinary tensor product. However, when we go to super-
symmetric groups such as the super-Poincaré group this is no longer true. In this case the
reconstruction really requires theZ2-grading to lie “below” as now the group is non-trivially
graded. SeeSections 4.3 and 4.4.

4.2. The dual context

As it is more familiar to physicists we also describe the dual context with Lie algebras and
universal enveloping algebras. Thus, letg be the Lie group of a space–time symmetry group
G as considered above. Its universal enveloping Hopf algebraU(g) is dually paired with
the function Hopf algebraG as well as with the function Hopf algebra of the double cover
Ĝ. We can describe comodules ofĜ alternatively as modules ofU(g). However, the global
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information about the difference betweenG and Ĝ that contains the information about
(integer versus half-integer) spin is lost. But we can recover the information by adjoining
an elementξ toU(g)with ξ2 = 1 which commutes with all other elements and has coproduct
�ξ = ξ ⊗ ξ . We extend the pairing witĥG by defining

〈ξ, f 〉 = (−1)|f |ε(f ) ∀f ∈ Ĝ.

The action ofξ on a representation should yield the eigenvalues 1,−1 depending on whether
spin is “integer” or “half-integer”. To ensure this we need to formally identifyξ with (−1)C ,
whereC is a suitable operator having even/odd eigenvalues on “integer”/“half-integer”
spin representations. (Note that given such an operator,(−1)C is automatically central,
idempotent, and group-like.)

Following the construction above then leads to this version ofU(g) as the spin–statistics
reduced (dual) quantum group with the non-trivial triangular structure given by the following
lemma.

Lemma 4.3. Let A be a cocommutative Hopf algebra with a central elementξ satisfying
ξ2 = 1 and�ξ = ξ ⊗ ξ . Then it admits a triangular structure

R = 1
2(1 ⊗ 1 + 1 ⊗ ξ + ξ ⊗ 1 − ξ ⊗ ξ). (5)

Thus, we see that we can do everything in the dual enveloping algebra context as well,
though at the price that the global structure needs to be added by hand. This is one reason
why we prefer the function algebra setting.

In fact, we could have performed the reconstruction from the beginning in the enveloping
algebra setting. Then, the elementξ (corresponding to the elementg generatingC′(Z2))
would have come from the (dual) bosonization construction for the enveloping algebra.
The final step of the spin–statistics reduction then precisely corresponds to identifying
ξ = (−1)C .

Example 4.4. In the context ofExample 3.3we adjoin the elementξ toU(su2) as described
above which we formally equate with(−1)C , whereC := 4EF+2H+H 2. Since〈C, tlmn〉 =
4l(l + 1)δm,n we get

〈ξ, t lmn〉 = (−1)4l(l+1)δm,n = (−1)2lδm,n

as required. We denote this version of the enveloping algebra with the triangular structure
(5) by U ′(su2).

We proceed similarly forExample 3.4and defineU ′(so3,1) with the operatorC + C̄,
whereC is as defined above and equateξ = (−1)C+C̄ .

We define the bosonizationU ′(poinc) = U(tr4)�U ′(so3,1) analogous toExample 3.13,
whereξ acts trivially onPµ.

4.3. Formalized reconstruction

We now formalize and generalize the procedure of reconstructing the symmetry quantum
group, exposing more clearly the role of the different layers. (This section is somewhat more
technical and can be omitted by non-experts.)
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The first layer is as before the underlying statistics. We generalize it from aZ
′
2-grading

given byZ′
2 to an arbitrary cotriangular Hopf algebraH . That is, the statistics is now encoded

by the category of (left)H -comodulesHM. Cotriangularity implies that the braiding is
symmetric, i.e., the braiding and its inverse are identical. This is in fact the limit of validity
of the traditional separation of spin and statistics: When the braiding is non-symmetric
such a separation is no longer possible. This is essentially becauseProposition 3.10does
not generalize to the coquasitriangular case. To put it differently: The bosonizationB �H

admits an induced coquasitriangular structure fromH in general only ifH is cotriangular.
For the second layer, the symmetry, we require now a braided commutative Hopf algebra

B in HM. This generalizes the concepts of group and supergroup to arbitrary braiding.
Again, usingTheorem 3.9and Proposition 3.10, the quantum group that generates the
braided category of representations ofB insideHM is the bosonizationB �H .

For the third layer, a spin–statistics relation obviously requires that we have a “spin” that
we can put in correspondence with the statistics. In the previous section that came from the
group SU(2). In fact, the only relevant part of it (integer or non-integer spin) is encoded in
the subgroupZ2 of SU(2). More generally, we need the same (quantum) group as the one
encoding the statistics but now as a quotient (“subgroup” in group language) ofB. In other
words, we require a surjection of braided Hopf algebrasσ : B�H in HM, whereH is
trivial as anH -comodule.

To impose now the spin–statistics relation we observe that the surjectionσ : B�H gives
rise to a surjection of cotriangular Hopf algebras

σ̃ : B̃ := B �H�H �H

upon bosonization. In fact,H � H = H ⊗ H since the coaction ofH onH was taken to
be trivial. For an arbitrary objectV in the category ofB̃-comodules, spin and statistics are
given by the induced coaction ofH ⊗ H . Denoting the coaction byβ : V → B̃ ⊗ V this
induced coaction is given bỹβ := (σ̃ ⊗ id) ◦ β : V → H ⊗H ⊗ V . To understand what it
means to satisfy the spin–statistics relation let us think for a moment in the more familiar
language of groups. Thus, let us think that (the dual of)β̃ defines an action of two copies
of the spin–statistics groupG on V . Now, V obeys the spin–statistics relation if it is in
the same representation with respect to both copies ofG. We can express this formally by
saying that the action ofG×G factors through the action of a single copy ofG by the group
multiplicationG × G → G. Translating this back to the quantum group language means
that the image of̃β must lie in(�H)⊗V , where�H is the image ofH inH ⊗H under the
coproduct. This is precisely ensured by restrictingB̃ to the largest sub-Hopf algebraA ⊆ B̃
so thatσ̃ (A) ⊆ �H . In fact,A is not, in general, the preimagẽσ−1(�H) as this is not
necessarily a Hopf algebra. One can derive a stronger condition directly from the properties
of a comoduleV . In fact, it is not enough thatV satisfies the spin–statistics relation in the
form β̃(V ) ⊆ (�H) ⊗ V . But applying the coproduct several times (or alternatively the
coproduct onH ⊗H ) the corresponding condition must hold for any copy ofH ⊗H that
appears in the image. This leads to the condition(id ⊗ σ̃ ⊗ id) ◦�2(A) ⊆ A⊗�H ⊗ A
which defines a bialgebra. As we require a Hopf algebra we need to impose the even more
restrictive condition(id ⊗ σ̃ ⊗ id) ◦ �2(A) ⊆ A ⊗ (�H ∩ τ(�H)) ⊗ A, whereτ is the
transposition map. This corresponds to requiring for a moduleV that also its dual satisfies the
spin–statistics relation. We callA thespin–statistics reductionof B̃ and formalize as follows.
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Definition 4.5. LetH be a cotriangular Hopf algebra. Letσ : B�H be a solution of the
triangular group extension problem inHM, whereH is equipped with the trivial comodule
structure under itself. Consider the induced mapσ̃ : B̃ := B � H�H � H = H ⊗ H .
ThenA ⊆ B̃ defined as the subspace satisfying

(id ⊗ σ̃ ⊗ id) ◦�2(A) ⊆ A⊗ (�H ∩ τ(�H))⊗ A (6)

is a sub-Hopf algebra called the spin–statistics reduction.

4.4. Extensions

We now turn to the question of whether and how a group extension in the conventional
(or triangular) sense gives rise to a quantum group extension.

Let us consider the Bose–Fermi case first. Thus, we have aZ2-graded Hopf algebraB
(e.g., the ordinary Poincaré group which is just trivially graded) and aZ2-graded extension
C of it (e.g., the super-Poincaré group). That is, we have aZ2-graded group extension
C�B in Z′

2M. In general, we have some cotriangular Hopf algebraH in place ofZ′
2 and

ρ : C�B is a triangular extension in the sense ofDefinition 3.7. On the other hand, bothB
andC are also solutions to the extension problem for the “spin”H as a trivial comodule in
HM. Thus, we have surjectionsσB : B�H andσC : C�H as well andσC = σB ◦ρ. The
categorical equivalence ofProposition 3.10lifts these to surjections of cotriangular Hopf
algebrasC �H�B �H�H �H = H ⊗H .

We now apply the spin–statistics reduction ofDefinition 4.5. Denote the reduced quantum
groups byB ′ andC′. The image ofC′ obviously satisfies the reduction condition itself and
thus we have a mapC′ → B ′ as the restriction ofC�H�B�H . However, this map is not
necessarily surjective. Thus, we do not necessarily obtain a solution of the quantum group
extension problem, but something weaker. The triangular extension could behave “badly”
with respect to the spin–statistics relation.

5. Nothing beyond supersymmetry

In this section, we perform in a sense the opposite operation to the reconstruction of
Section 4.4. We show, for the case of Bose–Fermi statistics, that any solution of the quantum
group extension problem can be induced from a solution of the triangular group extension
problem. Returning to the initial question whether a unification of external and internal
degrees of freedom beyond supersymmetry is possible, this implies a negative answer.
More precisely, any extension of the symmetry quantum group of ordinary quantum field
theory (in at least three spatial dimensions) can already be obtained through the known
(supersymmetric) ones.

We first consider the special case where the quantum group to be extended is just the spin
(and thus also statistics) generating one. This is our main theorem.

Theorem 5.1. Let π : A� Z′
2 be a solution of the quantum group extension problem for

Z′
2. Then, there is a solutionσ : B� Z2 of theZ2-graded group extension problem in
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Z′
2M, whereZ′

2 coacts trivially on itself, such that A is the spin–statistics reduction of
B � Z′

2.

Proof. Define the spacẽB := A ⊗ Z′
2 and a surjectioñσ : B̃ → Z2 ⊗ Z′

2 given by
a ⊗ h �→ π(a(1))⊗ π(a(2))h. This gives rise to the sequence

B̃
σ̃→Z2 ⊗ Z′

2
ε⊗id→ Z′

2. (7)

We giveB̃ the tensor product coproduct structure, the subalgebra structures ofA andZ′
2

and the cross-relations induced by the pull-back of the cotriangular structure ofZ′
2. This

makes(7) into a sequence of cotriangular Hopf algebras. (Note that the coquasitriangular
structure onZ2 ⊗ Z′

2 is thus trivial on the first component, hence the notation without the
prime.) Now consider the injection of cotriangular Hopf algebrasi : Z′

2 → B̃ given by
h �→ 1⊗h. The surjectionB̃ → Z′

2 : (ε⊗ id)◦ σ̃ invertsi. Thus, according toTheorem 3.9
there is a braided Hopf algebraB in the category of leftZ′

2-comodules so that̃B = B� Z′
2.

We can recoverB (as an algebra) asZ
′
2B̃ and observe that on this space the mapσ̃ restricts

to the subspaceZ2 ⊗ 1 of Z2 ⊗ Z′
2. IdentifyingZ2 ⊗ 1 asZ′

2(Z2 ⊗ Z′
2) we obtain precisely

a surjectionσ : B� Z2 as required.
It remains to show thatA is the spin–statistics reductionA′ of B̃. For this observe that

the condition(6) of Definition 4.5implies(id ⊗ σ̃ ⊗ id) ◦�2(A′) ⊆ B̃ ⊗ (�Z′
2)⊗ B̃. This

in turn implies for an elementa⊗ 1+ b⊗ g in A′ that(a(1)⊗ 1)⊗ 1⊗ (a(2)⊗ 1)+ (b(1)⊗
g) ⊗ g ⊗ (b(2) ⊗ g) ∈ B̃ ⊗ 1 ⊗ B̃ by composition with id⊗ (· ◦ (S ⊗ id)) ⊗ id. Thus,
b = 0 and it follows thatA′ ⊆ A. On the other hand, clearlyA ⊆ A′ and thusA = A′. This
completes the proof. �

The case of a general extension is obtained by considering two extensions of the
spin generating groupZ′

2 with a surjection and then observing that the surjection sur-
vives the transition from the quantum group context to theZ2-graded group
context.

Proposition 5.2. In the context ofTheorem 5.1consider two solutions of the quantum
group extension problem with a surjectionA′�A� Z′

2. Then there is an induced surjection
between the correspondingZ2-graded groupsB ′�B�H . Thus, to the quantum group
extensionA′�A corresponds theZ2-graded group extensionB ′�B.

In the case of ordinary quantum field theory the symmetry to be extended is the Poincaré
groupB = P̂ and it corresponds to the quantum groupA = P̂′ introduced inSection 4.1
(i.e., the Poincaré group with the cotriangular structure(4)). The statement of theProposition
5.2 is now that any solutionA′� P̂′ of the quantum group extension problem is induced
from a solutionB ′� P̂′ of the Z2-graded group extension problem. But this is nothing
but the supergroup extension problem described inSection 1. Thus, for ordinary QFT all
the solutions of the quantum group extension problem are induced from solutions of the
supergroup extension problem. The analysis of[4] remains exhaustive in our generalized
framework.
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6. Examples and applications

In this section, we wish to demonstrate the usefulness of quantum geometric meth-
ods to supersymmetry. Notions of homogeneous space, quantum principal bundle, exterior
derivative, all generalize from ordinary geometry to quantum geometry. In particular they
apply to supergroups, superspaces, super-derivatives, etc. Constructions in quantum ge-
ometry are just as easy for “super”-objects as they are for ordinary objects. Furthermore,
they generalize far beyond theZ2-graded case (although we shall not consider this here),
see in particular[5]. For example they apply to more general anyonic and braid statis-
tics, see[6]. An application to fractional supersymmetry which fits into this framework is
[11,12].

6.1. Elements of quantum geometry

We start by introducing the basic notions and give elementary examples (from ordinary
geometry). This section is mostly text book knowledge, see[5,13]. For quantum principal
bundles see[14], although our version here is more elementary. For statements from ordinary
differential geometry, see, e.g.[15].

Definition 6.1. LetH be a Hopf algebra,β : P → P ⊗ H a rightH -comodule algebra.
SetB := PH = {p ∈ P |β(p) = p ⊗ 1} and defineχ : P ⊗ P → P ⊗ H by χ =
(· ⊗ id) ◦ (id ⊗ β). If χ is surjective we call the triple(P, B,H) a quantum principal
bundle.

To see how this definition reduces to the usual one for ordinary principal bundles consider
a groupG acting on a manifoldE. This gives rise to a coactionβ : C(E)→ C(E)⊗ C(G).
The surjectivity ofχ then means precisely that the mapG × E → E × E defined by
(g, p) �→ (gp, p) is injective, i.e., thatG acts freely and thus defines a principal bundle.6

The base spaceM is the space of orbits ofG in E andC(M) is preciselyC(E)C(G).

Definition 6.2. Let π : A�H be a surjection of Hopf algebras.A is a rightH -comodule
algebra byβR = (id ⊗ π) ◦� and a leftH -comodule algebra byβL = (π ⊗ id) ◦�. The
spaceAH := {a ∈ A|βR(a) = a ⊗ 1} forms a leftA-comodule algebra via the coproduct
ofA (and thus also a leftH -comodule algebra viaβL). It is called aquantum homogeneous
space.

Again we consider how this definition reduces to the one for ordinary homogeneous
spaces. LetG ↪→ K be an injection of groups. This gives rise to a surjection of Hopf
algebrasπ : C(K)� C(G). The functions on the homogeneous spaceK/G by the induced
action ofG onK are precisely the functions onK invariant under this group action, i.e.,
C(K/G) ∼= C(K)C(G). In particular, a homogeneous space gives rise to a principal bundle.

6 In fact, it is also necessary thatG acts properly. This is a somewhat technical condition, strongly related to the
class of functions we consider. It is satisfied for “good” cases such as whenG is compact. We thus consider this
condition as “not being visible” in our algebraic setting.
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Remark 6.3. Given a Hopf algebra surjectionA�H we obtain a quantum principal bundle
(A,AH ,H). Furthermore, this bundle is leftA-equivariant, i.e.,A carries a left coaction
byA itself which commutes with the right coaction ofH and thus descends toAH .

This is in exact analogy to the situation in ordinary geometry.

Remark 6.4. Given a coquasitriangular Hopf algebraH and a braided Hopf algebra in
HM the bosonization gives rise to a Hopf algebra surjectionB � H�H (seeTheorem
3.9). In particular, we obtain a quantum homogeneous space. In fact this precisely recovers
B itself (as an algebra)B = (B �H)H .

This generalizes the situation of a semidirect product of Lie groups giving rise to a
homogeneous space.

Remark 6.5. Note that for a homogeneous spaceK/G the principal bundle(K,K/G,G)
can be identified with (a reduction of) the frame bundle onK/G. Furthermore, ifK/G is
Riemannian such thatK consists of isometries, the bundle(K,K/G,G) can be identified
with (a reduction of) the bundle of orthonormal frames onK/G. Now, ifK/G is orientable
the bundle decomposes into two connected components (corresponding to the two possible
orientations). We take the one corresponding to the orientation preserving subgroup ofK

and denote it(K ′,K/G,G′).K/G admits a spin structure iffK ′ admits a double cover̂K.
The spin bundle is then(K̂,K/G, Ĝ), whereĜ is the corresponding double cover ofG′.

Example 6.6. ConsiderS2 as the homogeneous space SO(3)/SO(2) = SU(2)/U(1). The
injectionU(1) ↪→ SU(2) becomes a surjectionSU(2)� U(1) from the quantum group
point of view. U(1) has a (Fourier, i.e., Peter–Weyl) basis{gm} with m ∈ Z, coproduct
�gm = gm⊗ gm, counitε(g) = 1, and antipode Sgm = g−m. The Hopf algebra surjection
is given by

t lmn �→ g2mδmn (8)

in the basis ofExample 3.1for SU(2).
The surjection(8) induces the right coactiont lmn �→ t lmn⊗ g2n of U(1) onSU(2) leading

to the algebraS2 as its right invariant subspace. A basis of it is given by{t ln0} with l ∈ N0.
These are precisely the spherical harmonics onS2.

Note that according toRemark 6.5we can view(SU(2),S2,U(1)) as the spin-bundle on
S2.

We now turn to the concept of quantum differentials that generalizes the concepts of
differential 1-forms and vector fields to the quantum geometric realm.

Definition 6.7 [16]. Let A be a Hopf algebra. LetΩ be a bicovariant bimodule overA.
That is, a left and rightA-module and a left and rightA-comodule, such that actions and
coactions commute in the obvious ways. Assume there is a bicomodule map d :A → Ω.
That is, d is a left and rightA-comodule map. If the Leibniz rule

d(ab) = d(a)b + a d(b) ∀a, b ∈ A
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holds and the mapA ⊗ A → Ω given bya ⊗ b �→ a db is surjective, then we callΩ a
(bicovariant first-order)differential calculus.

Proposition 6.8 [16,17]. Let A and H be Hopf algebras that are non-degenerately dually
paired. Then, differential calculi on A correspond to subspaces ofL ⊆ H ′ := kerε ⊂ H

with the following properties:

(a) L is invariant under the left coaction of H defined byη �→ η(1) ⊗ η(2) − η⊗ 1. That is,
the coactionH ′ → H ⊗H ′ defined in this way descends toL→ H ⊗ L.

(b) L is invariant under the left action of H given byh � η = h(1)ηSh(2). That is, the action
H ⊗H ′ → H ′ defined in this way restricts toH ⊗ L→ L.

The space L can be thought of as the space of right-invariant vector fields that act on A
as “derivatives” from the right via

L⊗ A→ A : η ⊗ a �→ ∂η(a) := 〈η, a(1)〉a(2)
for η ∈ L anda ∈ A. Dually, Γ := L∗ is the space of right-invariant1-forms. Γ carries a
left action of A determined by the coaction(a)via

〈η, a � ω〉 = 〈η(1), a〉〈η(2), ω〉 − 〈η, a〉〈1, ω〉
for a ∈ A, η ∈ L,ω ∈ Γ . Γ carries a left coactionω �→ ω[1] ⊗ ω[2] of A determined by
the action(b) via

〈h, ω[1]〉〈η, ω[2]〉 = 〈h(1)ηSh(2), ω〉
for h ∈ H, η ∈ L,ω ∈ Γ . The corresponding differential calculusΩ on A is isomorphic
to Γ ⊗ A as a vector space. Its right A-module and comodule structure are given by
multiplication and comultiplication on A. Its left A-module and comodule structure are the
tensor product ones. The mapd is recovered from the derivative asd(a) = ∑

i ωi∂ηi (a)

with ηi a basis of L andωi the dual basis ofΓ .
The left coactionη �→ η[1] ⊗ η[2] of A on L that makes the derivative mapL⊗ A → A

covariant is determined through the action of condition(b) by

〈Sh, η[1]〉η[2] = h(1)ηSh(2)
for h ∈ H, η ∈ L.

Remark 6.9. LetG be a Lie group andg its Lie algebra. We setA = C(G) andH = U(g)
above and recover the usual differentials withL = g. Note that the coaction of condition
(a) becomes trivial while the action of condition (b) is by the Lie bracket.

Example 6.10. Consider the dually paired quantum groupsSU(2) andU(su2) described in
Example 3.3. The ordinary tangent space issu2 with basisE,F,H leading to the derivatives

∂H (t
l
mn) = 2mtlmn, ∂E(t

l
mn) =

√
(l −m+ 1)(l +m)tlm−1,n,

∂F (t
l
mn) =

√
(l +m+ 1)(l −m)tlm+1,n.
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Note that this result extends to the dually paired quantum groupsSpin(3,1) andU(so3,1)
precisely as in the transition fromExample 3.3to Example 3.4.

Example 6.11. Consider the dually paired Poincaré groupPoinc and its Lie algebrapoinc
of Examples 3.12 and 3.13. The derivatives given bypoinc onPoinc come out as inExample
6.10supplemented by

∂X(x
µ) = 1

2

∑
ν

tr(σµσ(X)σν), ∂X̄(x
µ) = ∂X(xµ) ∀X ∈ {H,E,F },

∂Pµ(t
l
mn) = ∂Pµ(t̄ lmn) = 0, ∂Pµ(x

ν) = δµν.

6.2. Semidirect superextensions

In this section, we consider semidirect superextensions which are simple examples of
superextensions. These serve at the same time as a preparation for the more involved su-
perextensions considered later.

For our present mathematical purposes we give the following definition of “superextension”
as a minor modification ofDefinition 3.8.

Definition 6.12. Let H be a coquasitriangular Hopf algebra. ThenA is called afinite
non-trivial extensionorsuperextensionofH if (a)A�H is a surjection of coquasitriangular
Hopf algebras, (b) there is no Hopf algebraK such thatA ∼= H ⊗K as a Hopf algebra and,
(c)AH is finite-dimensional.

Remark 6.13. In the quantum principal bundle picture(A,AH ,H) condition (b) corre-
sponds to the bundle being non-trivial. Condition (c) says that the algebra of functions on
the base space is finite-dimensional or the base space itself “zero-dimensional”. Physically
speaking it means that the number of superfield components is finite.

We shall be interested in the case whereH is a cotriangular Hopf algebra of the type of
Lemma 4.1as this is the physically interesting situation (seeSection 4). Dually, we shall
as well consider dual superextensions (defined in the obvious way) for triangular Hopf
algebras of the type ofLemma 4.3.

An important (well known) supergroup is the analog of the translation group onR
n

defined as follows.

Lemma 6.14. LetΘn be the unital algebra generated by{θ1, . . . , θn} with relationsθiθj =
−θj θi . It is Z2-graded by|1| = 0, |θi | = 1. It extends to aZ2-graded commutative Hopf
algebra by the coalgebra structure�θi = 1 ⊗ θi + θi ⊗ 1. Counit and antipode are given
by ε(θi) = 0 andSθi = −θi .

Furthermore,Θn is self-dual via the pairing generated by〈θi, θj 〉 = δij .7

7 Note that we take the pairing here in the usual sense for Hopf algebras and not the usual sense for braided
Hopf algebras. That is, we require〈φ, vw〉 = 〈φ(1), v〉〈φ(2), w〉, etc. and not withφ(1), φ(2) interchanged.
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We are now ready to consider semidirect superextensions.

Proposition 6.15. In the context ofLemma 4.1let V be a finite-dimensional comodule of
H such that for the coactionβ : V → H ⊗ V the conditionβ(V ) ⊆ H1 ⊗ V holds. Then,
ΘV := Θn with {θ1, . . . , θn} a basis of V is a braided H-comodule Hopf algebra.

Furthermore, the semidirect product(bosonization)ΘV �H is a superextension of H. It
is generated as an algebra by H andθi with relationsθiθj = −θj θi andhθi = (−1)|h|θih.
The coalgebra structure on the H is the given one and forθi we have

�θi = θi ⊗ 1 + β(θi).

Corollary 6.16. Let H be a commutative Hopf algebra generated by the n-dimensional
matrix coalgebra T and equipped with the cotriangular structure

R(tij ⊗ tkl) = −ε(tij )ε(tkl) = −δij δkl. (9)

Then,Θn is a (braided) H-comodule Hopf algebra.
Furthermore, the semidirect product(bosonization) Θn �H is a superextension of H. It

is generated as an algebra bytij andθi with relationsθiθj = −θj θi andθi tjk = −tjkθi . The
coalgebra structure on thetij is the matrix coalgebra structure while forθi we obtain

�θi = θi ⊗ 1 +
∑
j

tij ⊗ θj .

Remark 6.17. Note that while the above seems to be adapted to real matrix groups it works
equally well for complex matrix groups. In that case, double the range of the indices and
defineti+n,j+n := t̄i,j and setti,j+n = 0 = ti+n,j .

We can equally consider the dual setting with the “enveloping algebra” counterpart of
H , although we need to adjoin an extra generator in this case as described inSection 4.2.

Proposition 6.18. In the context ofLemma 4.3given an n-dimensional A-module V with
basis{Q1, . . . ,Qn} such thatξ � Qi = −Qi , it extends to the(braided) A-module Hopf
algebraΘV := Θn.

Furthermore, the semidirect product(bosonization) ΘV �A is a dual superextension of
A. It is generated as an algebra by A andΘV with cross-relations aQi = (a(1)�Qi)a(2)∀a ∈
A. For primitive elements of A the latter take the commutator form[a,Qi ] = a �Qi . The
coalgebra structure on A is the given one and forQi we obtain�Qi = Qi ⊗ 1 + ξ ⊗Qi .

Example 6.19. Consider the superextensionΘ2�U ′(su2), whereΘ2 is in the fundamental
representation. Explicitly, we denote a basis ofΘ2 by {Q±} and define the action withσ(X)
given as inExample 3.4as

X �Qi =
∑
j

σ (X)jiQj ∀X ∈ {H,E,F },
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or explicitly,

E �Q+ = 0, E �Q− = Q+, F �Q+ = Q−,
F �Q− = 0, H �Q± = ±Q±, ξ �Q± = −Q±.

The cross-relations are immediate from that:

[E,Q+] = 0, [E,Q−] = Q+, [F,Q+] = Q−,
[F,Q−] = 0, [H,Q±] = ±Q±, ξQ± = −Q±ξ.

Example 6.20. The pairing ofΘ2 � SU′(2) andΘ2 � U ′(sl2) (usingLemma 3.11) leads
to the natural quantum tangent space with basisE,F,H,Q+,Q−. The corresponding
derivatives are the ones ofExample 6.10extended by

∂E(θ+) = θ−, ∂E(θ−) = 0, ∂F (θ+) = 0, ∂F (θ−) = θ+,
∂H (θ±) = ±θ±, ∂Q±(t

l
mn) = 0, ∂Q+(θ+) = 1,

∂Q+(θ−) = 0, ∂Q−(θ+) = 0, ∂Q−(θ−) = 1.

For homogeneous spaces we can easily obtain their extensions to superspaces corresponding
to superextensions of the group. This is simply the corresponding quantum homogeneous
space.

Example 6.21. Analogous to the ordinary 2-sphere as a homogeneous space of SU(2)
(Example 6.6) we can build a supersymmetric version as the quantum homogeneous space
of Θ2 � SU′(2) via the surjectionπ : Θ2 � SU′(2)� U(1). We call this thesemidirect
super-sphere. π is simply given by the extension mapΘ2 � SU′(2)� SU′(2) composed
with the usual surjectionSU′(2)� U′(1) given by(8). Note that this is a cotriangular Hopf
algebra map upon choosingR(gm ⊗ gn) = (−1)mnδmn on U′(1) (hence the prime in the
notation) corresponding toU(1) covering itself twice. Now the semidirect super-sphere
is simply the subalgebraS2

2 of Θ2 � SU′(2) which is (right) invariant under the coaction
induced byπ . That is, it is the subalgebra with basis{t li,0, t li,−θ+, t li,+θ−, t li,0θ+θ−}.

Note thatS2
2 is a leftΘ2�SU′(2)-comodule algebra (via the coproduct) by construction.

It gives rise to a quantum principal bundle(Θ2 � SU′(2),S2
2,U

′(1)) (seeRemark 6.3).
Upon “reducing the base space” toS2 it becomes the spin-bundle(SU′(2),S2,U′(1)) of
S2. Thus, we can view it as the spin-bundle ofS2

2.

6.3. Matrix supergroups

We now consider more complicated superextensions which are super-analogues of matrix
groups. These are well known in the theory of supergroups, see, e.g.[18]. (However, our
setting is closer in spirit to[19].) Much of their treatment here is along the lines of[5,8]
(where even more general braidings are considered). However, the “physical” quantum
group versions of supergroups (motivated fromSection 4) seem not to have been considered
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previously. In particular, the quantum group versionM′(m|n) as well as the treatment of the
OSp-supergroups in this context appear to be new.

Let m, n be natural numbers. Consider aZ2-graded vector spaceV with basis{vi} for
i ∈ {1, . . . , m+ n} such that|vi | := |i| with

|i| :=
{

1 if i ∈ {1, . . . , m},
0 if i ∈ {m+ 1, . . . , m+ n}.

Assume further that a graded commutative Hopf algebra (i.e., a supergroup)H coacts
(graded) from the left onV . Explicitly, vi �→ ∑

j uij ⊗ vj . As the coaction is graded the
grading on the elements{uij } must be given by|uij | = |i| + |j |.

Conversely, in order to construct such a graded commutative Hopf algebra, we start (ex-
actly as we would do in the theory of matrix groups) with the universal graded commutative
bialgebra that coacts onV .

Definition 6.22. Consider the matrix coalgebra generated by{uij } with i, j ∈ {1, . . . , m+
n}. It becomes aZ2-graded coalgebra (i.e., coproduct and counit respect the grading) by
defining|uij | := |i| + |j | (mod 2 understood). Next, consider its tensor algebra and extend
the coproduct to it as a graded algebra map. We obtain a graded bialgebra. Finally, we
quotient by the graded commutativity relation

uijukl = (−1)(|i|+|j |)(|k|+|l|)ukluij .

As this is compatible with the coproduct we obtain a graded commutative bialgebraM(m|n).
We call it thematrix super-bialgebraof rank(m|n).

Note that we can quotient by the relationsuij = 0 for |i| �= |j | to obtain a tensor product
of purely even commutative matrix bialgebras

M(m|n)� M(m)⊗ M(n). (10)

In the above context of a graded commutative Hopf algebra coacting on a graded vector
spaceV we consider the dual spaceV ∗ with a pairingV ⊗ V ∗ → C. It naturally becomes
a gradedH -comodule by the coactionv∗

i �→ ∑
j (−1)|j |·(|j |+|i|)Suji ⊗ v∗

j which leaves the
pairing invariant (with{v∗

i } the dual basis to{vi}).
Assume now thatV andV ∗ are isomorphic as gradedH -comodules via a mapη : V ∗ →

V with v∗
i �→ ∑

j ηijvj . As η is bijective the inverse matrixη−1
ij exists andηij = η−1

ij = 0
for |i| �= |j | as it is graded. The fact thatη is a comodule map implies that the elements
Suij of H can be written in terms of theuij as

Suij =
∑
k,l

(−1)|l|·(|l|+|j |)ηjkuklη
−1
li . (11)

This in turn implies the relations

ηkl1 =
∑
i,j

(−1)|l|·(|l|+|i|)ηijujluik, (12)



R. Oeckl / Journal of Geometry and Physics 44 (2002) 299–330 323

η−1
kl 1 =

∑
i,j

(−1)|i|·(|i|+|k|)uljukiη
−1
ij (13)

by the defining property of the antipode.
Conversely, we can construct a graded Hopf algebra by demanding it to be the universal

graded Hopf algebra with coaction onV such thatη is a graded comodule map. This is
analogous to constructing a matrix group that leaves a non-degenerate bilinear form on its
defining representation (which can be seen as an isomorphism to the dual representation)
invariant.

Proposition 6.23. Let ηij be an invertible matrix such thatηij = 0 if |i| �= |j |. Consider
the graded commutative bialgebraM(m|n) and impose the relations(12) and (13). They
are compatible with the coalgebra structure so that we obtain again a graded commutative
bialgebraInvη(m|n).Furthermore, Invη(m|n) is a graded Hopf algebra with antipode given
by (11).

Example 6.24. Let r, s be natural numbers. Define an invertible matrixηij of rank 2r + s
by

η2i−1,2i = 1, η2i,2i−1 = −1 for i ∈ {1, . . . , r},
ηj,j = 1 for j ∈ {m+ 1, . . . , m+ n},

and all other entries zero. The graded commutative Hopf algebraInvη(2r|s) is called the
ortho-symplectic supergroupOSp(2r|s). Its even commutative quotient is

OSp(2r|s)� Sp(2r)⊗ O(s).

Example 6.25. OSp(2|1) is the matrix super-bialgebraM(2|1) with additional relations

u13u23 − u31u32 = 0, 2u32u31 + u33u33 = 1,

u11u22 − u12u21 + u13u23 = 1, −u11u32 + u12u31 + u13u33 = 0,

−u21u32 + u22u31 + u23u33 = 0, u22u13 − u12u23 − u32u33 = 0,

−u21u13 + u11u23 + u31u33 = 0.

It has an antipode given by

S


 u11 u12 u13
u21 u22 u23
u31 u32 u33


 =


 u22 −u12 −u32

−u21 u11 u31
u23 −u13 u33


 .

Let us now consider the corresponding quantum groups (i.e., cotriangular Hopf algebras).
According toTheorem 3.9andProposition 3.10the cotriangular bialgebra with the same
representation category asM(m|n) is the bosonizationM(m|n) � Z′

2. It is generated by
M(m|n) andZ′

2 as an algebra with cross-relationsguij = (−1)|i|+|j |uijg and has coproduct

�uij =
∑
k

uikg
|k|+|j | ⊗ ukj, �g = g ⊗ g.
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If we want to considerM(m|n) � Z′
2 as a symmetry of a quantum field theory with

Bose–Fermi statistics we need to perform the spin–statistics reduction (Section 4, Definition
4.5) in order to eliminate representations with the wrong spin–statistics relation. In fact,
this is already suggested by our construction. The fact that the vector spaceV hasm
odd andn even basis vectors and not the other way round is “forgotten” by the super
matrix-bialgebraM(m|n) as M(m|n) ∼= M(n|m). However, writing the coaction of the
bosonizationM(m|n)� Z′

2 onV we find

vi �→
∑
j

uijg
|j | ⊗ vj . (14)

This suggest that we should in the commutative quotient(10) interpretM(m) as generating
the spin. Then(14) precisely reflects the fact thatV has the right spin–statistics relation.
Conversely, the spin–statistics reduction ofM(m|n) � Z′

2 is given by its sub-bialgebra
generated byuijg

|j |.
Apart from the physical motivation, we can also motivate this reduction purely mathe-

matically by demanding that we want to consider the universal object coacting onV .

Proposition 6.26. The spin–statistics reductionM′(m|n) of M(m|n) � Z′
2 is given by its

sub-bialgebra generated by the elementstij := uijg
|j |. Explicitly, it is generated by the

matrix coalgebra{tij } with relations given by the cotriangular structure

R(tij ⊗ tkl) = (−1)|i|·|k|δij δkl.

Explicitly,

tij tkl = (−1)|i|·|k|+|j |·|l|tkltij .

It has a commutative quotient

M′(m|n)� M′(m)⊗ M(n)

by tij �→ 0 for |i| �= |j |. This is a map of cotriangular bialgebras whereM′(m) has
cotriangular structure(9) andM(n) has trivial cotriangular structure. Furthermore, it is a
(bialgebra) superextension in the sense ofDefinition 6.12.

Note that choosing the “wrong” spin–statistics relation also yields a sub-bialgebra of
M(m|n)� Z′

2 which is generated by{uijg
|j |+1}. It is isomorphic toM′(n|m).

Let us now consider the spin–statistics reduction of the bosonization of a graded Hopf
algebraInvη(m|n)� Z′

2 that leaves an isomorphismη : V ∗ → V invariant. In fact, instead
of constructing firstInvη(m|n) and then its spin–statistics reduction we can proceed directly.
Thus, the dual spaceV ∗ carries naturally a coactionv∗

i �→ ∑
j Stji ⊗ v∗

j in terms of the
antipode. Now, an isomorphismη : V ∗ → V as above implies for the antipode

Stij =
∑
k,l

ηjktklη
−1
li , (15)
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and thus the relations

ηkl1 =
∑
i,j

ηij tjl tik, (16)

η−1
kl 1 =

∑
i,j

tlj tkiη
−1
ij . (17)

Alternatively, these are obtained from(11)–(13)by usinguij = tijg|j | and the commutation
relation withg in M(m|n)� Z′

2.

Proposition 6.27. Let ηij be an invertible matrix such thatηij = 0 if |i| �= |j |. Consider
the cotriangular bialgebraM′(m|n) and impose the relations(16) and (17). They are com-
patible with the coalgebra structure and cotriangular structure so that we obtain again a
cotriangular bialgebraInv′

η(m|n). Furthermore, Inv′
η(m|n) is a cotriangular Hopf algebra

with antipode given by(11).

We denote the cotriangular Hopf algebra version of the ortho-symplectic supergroup by
OSp′(2r|s). Its commutative quotient gives rise to the superextension

OSp′(2r|s)� Sp′(2r)⊗ O(s). (18)

Thus, physically, the spin is attached to the symplectic groupSp′(2r). Note however, that
we can construct a second versionOSp′′(2r|s) based onM′(s|2r)which has a commutative
quotient

OSp′′(2r|s)� Sp(2r)⊗ O′(s).

In this case the spin is attached to the orthogonal groupO′(s).

Example 6.28. OSp′(2|1) is the cotriangular matrix bialgebraM′(2|1) with additional
relations

t13t23 + t31t32 = 0, 2t31t32 + t33t33 = 1, t11t22 − t12t21 + t13t23 = 1,

t11t32 − t12t31 + t13t33 = 0, t21t32 − t22t31 + t23t33 = 0,

t22t13 − t12t23 + t32t33 = 0, t21t13 − t11t23 + t31t33 = 0.

Its antipode is given by

S


 t11 t12 t13
t21 t22 t23
t31 t32 t33


 =


 t22 −t12 t32

−t21 t11 −t31
t23 −t13 t33


 .

Example 6.29. Consider the quantum homogeneous space given byπ : OSp′(2|1)� U′(1).
This is another version of the super-sphere (see[20]) which we call theOSp(2|1) super-
sphere. Here,π is defined as the composition of the extension map(18) with id ⊗ ε and
subsequently with(8). A set of generators of this subalgebraS2|1 of OSp′(2|1) is given by
{ti3, ti1tj2}. (The relations are as inExample 6.28.)
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Analogous toExample 6.21we can view(OSp′(2|1),S2|1,U′(1)) as the spin-bundle
overS2|1.

For example super-Anti-de-Sitter space can be constructed precisely in this way. As
Anti-de-Sitter space is the homogeneous space SO(3,2)/SO(3,1) we pass to the spin
groups Spin(3,2)/Spin(3,1), where Spin(3,2) = Sp(4). Then we consider the “physical”
quantum groupsSp′(4)� Spin′(3,1) and the superextensionOSp′(4|1)� Sp′(4). The
corresponding superextension of Anti-de-Sitter space is thus the quantum homogeneous
spaceOSp′(4|1)Sp′(4).

6.4. The super-Poincaré group

In this section, we consider the standard super-Poincaré group which is yet another type
of superextension. Its presentation here in the quantum geometric framework has some
novel aspects (in particular, the consideration of the “physical” quantum group version).

Recall the context ofExample 3.12. We start with the proper quantum mechanical version
of the Lorentz groupSpin(3,1) which is equipped with the cotriangular structureR(tij ⊗
tkl) = −δij δkl (same if one or botht carry a bar) of Bose–Fermi statistics (seeSection 4.1)
and which we denote bySpin′(3,1). Correspondingly, the quantum mechanical Poincaré
group is the quantum groupPoinc′ = Mink � Spin′(3,1). Dually, we considerU ′(so3,1)
andU ′(poinc) (seeExamples 3.13 and 4.4).

We are now ready to construct superextensions. We start by considering the four-
dimensional comodule ofSpin′(3,1) with basis{θ+, θ−, θ̄+, θ̄−} and left coaction in the
obvious way. It gives rise to a braided commutative comodule Hopf algebraΘ4 as in
Proposition 6.15. Dually we can consider a four-dimensional module ofU ′(so3,1) with ba-
sis{Q+,Q−, Q̄+, Q̄−} and action given as inExample 6.19. We can view it as the envelope
U(ω4) of the “abelian” super-Lie algebraω4 with theQ’s forming its basis (i.e.,QiQj =
−QjQi). Both give immediately rise to semidirect superextensionsΘ4 � Spin′(3,1)
and U(ω4) � U ′(so3,1). Furthermore, by the induced coaction ofPoinc′, respectively,
the induced action ofU ′(poinc) we obtain semidirect superextensionsΘ4 � Poinc′ and
U(ω4)� U ′(poinc).

However, the usual Poincaré super-Lie algebra and supergroup are obtained as follows.

Example 6.30. Consider the graded commutativeSpin′(3,1)-comodule Hopf algebra
SMink built on the tensor productMink ⊗ Θ4 and defined as follows. It has the tensor
product algebra structure and the coalgebra structure as forΘ4 and

�xµ = xµ ⊗ 1 + 1 ⊗ xµ +
∑
i,j

θ̄iσ
µ
ij ⊗ θj +

∑
i,j

θi σ̄
µ
ij ⊗ θ̄j .

onxµ. The antipode is given by Sθi = −θi and Sxµ = −xµ.
SMink is precisely (the algebra of functions on) the super-translation group. The super-

Poincaré group is now obtained analogous to the ordinary one, namely as the bosonizat-
ionSPoinc′ = SMink�Spin′(3,1). Explicitly, it is generated as an algebra by{tij , t̄ij , xµ, θ±,
θ̄±}. It has the relationsθiθj = −θj θi andθi tjk = −tjkθi and all other relations commutative.
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It has the matrix coalgebra structure onT while for xµ andθi it is given by

�θi = θi ⊗ 1 +
∑
j

tij ⊗ θj ,

�xµ = xµ ⊗ 1 +
∑
ν

Λµν ⊗ xν +
∑
i,j,k

θ̄iσ
µ
ij tjk ⊗ θk +

∑
i,j,k

θi σ̄
µ
ij t̄jk ⊗ θ̄k.

Note thatSMink is at the same time a quantum homogeneous space (seeRemark 6.4)
and carries a left coaction ofSPoinc′ as an algebra by construction. It is thus nothing but
super-Minkowski space and gives rise to a quantum principal bundle(SPoinc′,SMink,
Spin′(3,1)) which we can view as its spin-bundle (see the remarks inExamples 6.21 and
6.29).

In fact,SMink can be viewed as a braided cocycle extension

Θ4 ↪→ SMink� Mink (19)

(in the category ofSpin′(3,1)-comodules) with the injection and surjection defined in the
obvious ways. The cocycleMink → Θ4 ⊗Θ4 which determines the extension is given by

xµ �→
∑
i,j

θ̄iσ
µ
ij ⊗ θj +

∑
i,j

θi σ̄
µ
ij ⊗ θ̄j . (20)

For details of the relevant Hopf algebra extension theory we refer the reader to[5]. (The
generalization to theZ2-grading is straightforward in the present case.)

We can equally utilize the enveloping algebra picture. The sequence(19) becomes after
dualization and restriction to the (super) Lie algebras

tr4 ↪→ str4�ω4.

Now str4 is a central (graded) extension ofω4 by tr4. Here, the action ofU ′(so3,1) onω4
is given as inExample 6.19, with the same action for the barred generators and the action
between barred and un-barred generators zero. The extension is determined by the graded
cocycleω4 ⊗ ω4 → tr4 given by

Q̄i ⊗Qj �→ 2
∑
µ

σ
µ
ij P

µ.

This is the familiar way to look at the super-translation Lie algebrastr4, see, e.g.[21]. The
enveloping Hopf algebra version of this is precisely the dual of(20)and lives in the category
of U ′(so3,1)-modules.

Example 6.31. str4 is theU ′(so3,1)-module super-Lie algebra built on the spaceω4 ⊕ tr4
with bracket

{Q̄i,Qj } = 2
∑
µ

σ
µ
ij P

µ,

and all brackets involvingPµ vanishing. The ordinary super-Poincaré Lie algebra is now
the semidirect productstr4 � so3,1. However, the proper quantum group (determining the
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physical symmetries) is the “enveloping” Hopf algebraU ′(spoinc) := U(str4)�U ′(so3,1).
Note that it differs fromU(str4 � so3,1) which can be constructed as a graded enveloping
Hopf algebra in that it takes into account the spin–statistics relation as explained above.
The cross-relations between{E,F,H } and{Q±} are as inExample 6.19and extended to
the barred generators in the obvious way. The coproducts for all generators are primitive,
except for�Qi = Qi ⊗ 1 + ξ ⊗Qi .

Due toLemma 3.11SPoinc′ andU ′(spoinc) are dual (co)triangular Hopf algebras. This
induces a natural quantum tangent space which can be identified withspoinc (i.e., it is
the smallest quantum tangent space that containspoinc). The derivatives are the ones of
Example 6.11supplemented by

∂H (θ±) = ±θ±, ∂H̄ (θ̄±) = ±θ̄±, ∂E(θ+) = θ−, ∂Ē(θ̄+) = θ̄−,
∂F (θ−) = θ+, ∂F̄ (θ̄−) = θ̄+, ∂Qi (θj ) = δij , ∂Q̄i (θ̄j ) = δij ,
∂Qi (x

µ) =
∑
j

σ̄
µ
ij θ̄j , ∂Q̄i (x

µ) =
∑
j

σ
µ
ij θj .

All other derivatives of generators vanish.

7. Conclusions and outlook

We have exhibited here a categorical point of view on quantum field theory yielding
a generalized notion of symmetry based on quantum groups and braided categories. This
is motivated by the observation that rather than symmetry groups themselves, only their
representation categories are operationally relevant in quantum field theory. The resulting
framework unifies the concepts of conventional symmetry and exchange statistics (as was
already noticed in[6]). We have shown how (super)group symmetry, Bose–Fermi statistics
and the spin–statistics relation are interconnected in a three-layer structure that recovers the
generalized quantum group symmetry of quantum field theory.

Rephrasing the old question of non-trivially extending space–time symmetries in the
new framework naturally leads to supersymmetry (assuming Bose–Fermi statistics). Fur-
thermore, we were able to show that (in this framework) supersymmetry is indeed the most
general way of unifying external and internal symmetries. Even if we drop the non-triviality
condition only group symmetries and supersymmetries are allowed. This appears to be a
no-go theorem for “hidden” (non-triangular) quantum group symmetries in physically in-
teresting theories such as the standard model.

However, this has to be interpreted with care. A crucial ingredient in our formulation is the
condition that the quantum group which extends the given space–time–statistics quantum
group does not modify the statistics. (That is, the cotriangular structure is preserved by the
extension.) We see this as a natural constituent of the extension problem (and it is implicit
in its conventional formulation). For example, it would be conceivable that there exist
multiplets of states with braid statistics of which so far only (bosonic or fermionic) singlets
have been observed. But as this goes in a sense beyond ordinary quantum field theory it
also goes beyond our formulation of the extension problem. Furthermore, the braiding is
defined for all objects in the relevant category while not all of them can be necessarily
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interpreted as being subject to some exchange statistics in the conventional sense. It is thus
conceivable that the braiding can have a broader meaning in general and just reduce on the
relevant objects to the conventional statistics. This would also leave open the possibility for
non-triangular quantum group symmetries.

We have also seen that for theories with non-symmetric braid statistics (e.g., anyonic in
two spatial dimensions), the separation between the conventional notions of symmetry and
statistics can no longer be retained (see the end ofSection 2.1and the beginning ofSection
4.3). Only the generalized notion of quantum group symmetry remains applicable. It is thus
no surprise that (non-triangular) quantum groups are indeed employed in the construction
of fractional supersymmetry (which implies non-symmetric braid statistics)[11,12].

Finally, we mention that there is a generalization of quantum field theory[22] to precisely
the categorical framework (braided categories) we outline inSection 2.1. This naturally takes
in quantum group symmetries and for the proper Poincaré quantum group reconstructed
in Section 4.1yields automatically the correct differences for path integrals and Feynman
rules between bosons and fermions[6]. In this context the present paper clarifies how
supersymmetric theories would have to be constructed in this framework (namely through
their proper quantum group versions considered here). Furthermore, evenq-deformations
of supersymmetries (of which some examples have been considered in the literature, see,
e.g.[8]) can thus be employed. Asq-deformation has been proven to be a potential regulator
of quantum field theory[22] this yields the prospect of a (notoriously difficult) covariant
regularization of supersymmetric theories.
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