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Abstract

We examine the notion of symmetry in quantum field theory from a fundamental representation
theoretic point of view. This leads us to a generalization expressed in terms of quantum groups and
braided categories. It also unifies the conventional concept of symmetry with that of exchange statis-
tics and the spin—statistics relation. We show how this quantum group symmetry is reconstructed
from the traditional (super) group symmetry, statistics and spin—statistics relation.

The old question of extending the Poincaré group to unify external and internal symmetries
(solved by supersymmetry) is reexamined in the new framework. The reason why we should allow
supergroups in this case becomes completely transparent. However, the true symmetries are not
expressed by groups or supergroups here but by ordinary (not super) quantum groups. We show in
this generalized framework that supersymmetry remains the most general unification of internal and
space—time symmetries provided that all particles are either bosons or fermions. Finally, we demon-
strate with some examples how quantum geometry provides a natural setting for the construction
of super-extensions, superspaces, super-derivatives, etc.
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1. Introduction

The question was raised a long time ago whether the external (space—time) and internal
symmetries of the quantum field theories with which we describe nature could be part of a
larger symmetry group that is not simply a direct product of the two.
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For relativistic quantum mechanical theories the space—time symmetry group is the uni-
versal coverP of the Poincaré groug. (For simplicity we refer taP in the following as
the Poincaré group.) Thus, a unification of symmetries in the above-mentioned sense would
imply a solution to the following problem: Is there a larger grau which contains the
Poincaré groupf’, but is not simply a direct product dt and some other group? That is,
is there a grougs 2 with an inclusion

P <> SP suchthatSP # P x G 1)

for any groupG?

While mathematical solutions to the problem in this simple form can be easily found, they
might not be of physical relevance. One can enldtge.g., by adding scale transformations.
However, scale invariance is not a feature of the physically relevant quantum field theories
of fundamental interactions. One therefore needs to impose additional constraifs on
in order for it to be physically interesting. Precisely such an analysis was carried out in
the context of scattering theory in the 1960s, and brought into its most comprehensive
form by Coleman and Mandu[d]. They were able to show that under reasonable physical
assumptions the Lie algebra version of probléh has no solution: There is no such
extension of the Poincaré Lie algebra.

Only a few years later, however, supersymmetry emerged as a physically acceptable
solution to the extension problem in a modified fd2y8]. One needs to extend the concept
of symmetry from that of groups and Lie algebras to that of supergroups and super-Lie
algebras. Then, a physically acceptable extension of the Poincaré Lie algebra exists: The
super-Poincaré Lie algebra. The analysis of Coleman and Mandula was repeated by Haag
et al.[4] for the super-Lie algebra case. They found the super-Poincaré Lie algebra (in its
versions with various numbers of supersymmetries and additional central charges) to be the
only physically acceptable extension of the Poincaré Lie algebra.

Is this the end of the story? Can we go beyond supergroups and supersymmetry? And
why “super” in the first place?

In the following we try to answer these questions from a categorical (or representation
theoretic) point of view. This leads us to a unified view of symmetry and statistics through
braided categories and quantum groupadtion 2.). This generalized notion of symmetry
then provides the natural framework for posing the analogue of the extension prd)lem
(Section 2.2. In Section 3we introduce the reader to the necessary essentials from quantum
group theory and provide some elementary examfestion 4.1is devoted to reconstruct-
ing the quantum group symmetry underlying ordinary quantum field theory. As it turns out
this is not the ordinary Poincaré group but a closely related quantum group. The recon-
struction is then generalize®¢ction 4.3 and applied to the extension proble®egtion
4.4). The latter section provides the link between the superextension problem and our gen-
eralized extension problem. Bection 5 we pursue the question of whether (for ordinary
QFT) there is something “beyond supersymmetry”. The answer is “No” and indeed the
main mathematical result here is that all possible extensions (in the case of Bose—Fermi
statistics) can be obtained from groups or supergroups.

As it turns out, our setting also provides us with new mathematical tools for dealing
with supersymmetry. These are the tools of quantum georfgtriBy quantum geometry
we mean here the non-commutative geometry whose manifold-objects are algebras and
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whose group-objects are quantum groups (Hopf algebras). In quantum geometry there are
generalizations of principal bundles, homogeneous spaces, differential forms, etc. We give
examples irSection 6of how all this can be applied to supersymmetry and facilitates super-
symmetric constructions. These include semidirect superextensions, the OSp-supergroups,
super-spheres and the super-Poincaré group.

Proofs for mathematical statements are in general omitted as they are either known or
straightforward. In the former case either a reference is given or they can be found in text
books on quantum groups. An exception forfii@orem 5.ivhose proof is explicitly given.

We work throughout over the field of complex numbers.

2. Thegeneralized extension problem
2.1. Why quantum group symmetries?

With the insufficiency of the group context in mind, we search for a more general but
natural framework for the notion of symmetry and the extension problem. We are hereby
guided by the categorical (i.e., representation theoretic) aspects of quantum field theory.

What are the “objects” that we deal with? States, fields, operators, Lagrangians, etc. all
live in vector spaces ov@ or C. Furthermore, they all carry actions of the Poincaré grdup
or some larger symmetry group of the theory. That s, these vector spaces are representations
of the symmetry group. Furthermore, there are maps between the representations which are
required to be intertwiners, i.e., they commute with the group action. For example, an
invariant operator can be viewed as such a map between states. What we have described so
far, objects and maps between them, is essentially what malaegory In this case, it is
the category of representations of the symmetry group.

An essential operation in quantum field theory is the formation of tensor products of
representations, e.g., to form a two-particle state out of two one particle states. This gives
additional structure to the category of representations of the symmetry group and makes it
into amonoidal categoryin fact, this monoidal category carries all the information about
the representation theory and we can forget about the group itself altogether.

We already know that we need to generalize the symmetry concept beyond that of groups
to allow for supersymmetry. However, replacing groups by supergroups leads to monoidal
categories as well. Conversely, given a monoidal category we require no knowledge about
an underlying group or supergroup to perform all the representation theoretic operations
necessary in quantum field theory. Thus, it appears natural to define a generalized concept
of symmetry simply by that of a monoidal category.

However, there is a theorem of quantum group theory that states that for any monoidal
category (with duals) there is a Hopf algebra so that the monoidal category is its category of
representation$ This is called Tannaka—Krein reconstruction (§8. In fact, this gives
rise to a one-to-one correspondence between monoidal categories and Hopf algebras. Thus,
the abstract generalization to any monoidal category gives us back a more concrete object

1 We use the word “representation” for a Hopf algebra here and in the following to mean “comodule”. See
Section 3for more details.
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that encodes the symmetries—a Hopf algebra. In the group case, this Hopf algebra is the
commutative Hopf algebra of functions on the graup. the supergroup case the relation
to the corresponding Hopf algebra is slightly more complicated $eetion 4.

We can go on to exploit our categorical point of view further to encompass the notion of
particle statistics as well. In fact, this turns out todssentialas symmetry and statistics
become inseparably linked in the generalized Hopf algebraic context.

A bit less obvious, itis also an essential ingredient of quantum field theory to have for two
representation® andW an interwinerV @ W — W ® V. For two one-particle states this
interwiner tells us what the exchange statistics of the particles is. For Bosons this would be
v®w — w ® v while for Fermions we would have an extra minus sigdw — —w Q v.

In general, the definition of such an interwiner for any pair of representations is called a
braiding. Thus, the objects of a quantum field theory live ibraided monoidal category

This encodes now both, the symmetries and the statistics of the theory. Note that this concept
allows for more general statistics than Bose and Fermi[@der a discussion.

The braiding on the category as a category of representations yields an extra structure
on the corresponding Hopf algebra via Tannaka—Krein reconstruction. This is called a
coquasitriangular structureAgain, this gives rise to a one-to-one correspondence between
braided monoidal categories and coquasitriangular Hopf algebras. In the following, we use
the termquantum grougio denote coquasitriangular Hopf algebras.

Importantly, it is not possible to combine arbitrary Hopf algebras with arbitrary braidings.
To the contrary, for a given Hopf algebra the set of possible braidings on its representation
category (encoded in the coquasitriangular structure) is usually very limited. Thus, symme-
try and statistics cannot be viewed as separate entities in general. We subsume both under
a generalized notion of symmetry which replaces ordinary groups by quantum groups. Un-
surprisingly, also supersymmetry gives rise to a particular example of such a generalized
symmetry, as we shall discussSection 4.4

2.2. The quantum group extension problem

Let us examine the extension problémfrom the same abstract representation theoretic
point of view that we have employed in the previous section.

Suppose we wish to embed a groGpinto a larger grougs’. That is, we look for an
inclusionG < G’. For the moment suppose we are just given a group homomorphism
G — G'. For the representations this means that we can pull back a representagicio of
one ofG. In fact, this gives rise to a (monoidal) functor between the (monoidal) categories
of representations of the groups in the opposite direiowt — ¢ M. That is, for every
representation af’ we get one of5 and for every interwiner between representations’of
we get one between representation&oConversely, given this functor we can reconstruct
the group homomorphism. Indeed, there is a one-to-one correspondence between such
functors and group homomorphisms.

2 We are somewhat sloppy here and in the following concerning functional analytic questions such as the choice
of class of functions on a space or the necessity to complete tensor products, consider multiplier algebras, etc. The
treatment of these questions would unnecessarily complicate the discussion and is irrelevant for the purposes of
this paper.
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Generalizing as in the previous section to the case of arbitrary monoidal categories we
still have such a correspondence. It is between functors and Hopf algebra homomorphisms.
This time, both arrows point in the same direction. Thus, the generalization of the group
homomorphisnG — G’ is a Hopf algebra homomorphisiY — H.We recover the group
case from the Hopf algebra case with the function Hopf algelras C(G), H' = C(G’).

The injectivity of the group homomorphism corresponds to the surjectivity of the Hopf
algebra homomorphism. Thus, the problem of finding a “larger” gr6lpn which to
embed a grouj; generalizes to the problem of finding a “larger” Hopf algeBfawith a
surjectionH’— H to the given Hopf algebré/.

While in the group extension proble(t) the exchange statistics is not explicitly men-
tioned and only enters separately in the physical conditions we can do better with our
generalized setting dbection 2.1 To include the statistics we only have to consider the
braiding that encodes it as well. Thus, we have braided monoidal categories instead of just
monoidal categories. For a (monoidal) functor between such categories we impose the nat-
ural condition of being braided, i.e., of commuting with the braiding. This exactly expresses
the condition that the statistics is preserved by the extension. We then have a correspon-
dence between braided monoidal functors and homomorphisms of coquasitriangular Hopf
algebras (quantum groups). Thus, the extension problem becomes that of finding a “larger”
guantum groug’ with a surjection (of coquasitriangular Hopf algebré&)+ H to a given
guantum group.

The analogue of the condition that the “larger” group not be a direct product corresponds to
the “larger” quantum group not being a tensor product. Thus, we can formulate the quantum
group generalization dfl) as follows: Denoting the relevant quantum group version of the

Poincaré group by:’/,3 find a quantum grouﬁﬁ’ and a surjection
SP'—» P’ suchthatSP’' £ P' ® G 2

for any quantum groufs.

3. Essentialsfrom quantum group theory

In this section, we introduce a few essential elements of quantum group theory and give
some elementary examples. The latter serve to acquaint the reader with the formalism and
form at the same time the basis for supersymmetric exampl8gdtion 6 Most of the
material in this section is text book knowledge. A good reference is Majid’'s fejokn
particular for the braided aspects. For the material on specific groups and Lie algebras see,
e.g.[7].

We assume the reader to be familiar with the notions of Hopf algebra, module, comodule,
and Hopf algebra pairing. We use the notatians:, S for coproduct, counit and antipode
of a Hopf algebra. We use Sweedler’s notation (with implicit summatian}= a1y ® a2
for coproducts and a similar notation— v(1) ® v(p) for left coactions.

3 B’ encodes now the Poin@symmetry as well as Bose—Fermi statistics and the spin—statistics relation. It is
derived inSection 4.1
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A braided monoidal category is a monoidal category (i.e., a collection of objects and
maps with a tensor product and certain compatibility conditions) so that for any two objects
V, W there is an invertible mapr : V®@ W — W ® V (the braiding). The collection of
Y¥’s also has to satisfy certain compatibility conditions. A braiding is catjgdmetridf
Y=yt

A coquasitriangularstructureR : H® H — C on a Hopf algebr& provides a braiding
on its category of left comodules via

Y@ w) =R(wa @ va)we Q ve)-

If R(aq) ® b)) R(b2) ® a)) = €(a)e(b), thenR is calledcotriangularand the induced
braiding is symmetric.

Dually, aquasitriangularstructureR € H ® H on a Hopf algebrad/ provides a braiding
on its category of left modules via

YwRw)=Rapw®R1>v

with Ry ® Rz := R (summation implied). IR"1 = R, ® Ry, thenR is calledtriangular
and the induced braiding is symmetric.

As alluded to above, a grou gives rise to a Hopf algebra as follows. Take the algebra
of functionsC(G) on G and equip it with a coproduct defined 9 f)(g, n) = f(gh)
for f € C(G) andg, h € G using the identificatio®(G x G) = C(G) ® C(G). Counit
and antipode are given by(f) = f(e) and(Sf)(g) = f(g~ 1), wheree denotes the
unit element of the group. Note that the Hopf algeB(&) naturally carries the trivial
cotriangular structur® = € ® € which encodes the trivial braiding® w — w ® v.

For matrix groups the corresponding Hopf algebra can be constructed rather explicitly.
Consider the coalgebra with bagig} fori, j € {1, ..., n}, with coproductAsj = Y, tk®
tkj and counite () = §jj. It is called then-dimensionalmatrix coalgebraand is dual to
the algebra ofi x n-matricesM,,. The free commutative bialgebra generated byrjhs
the “prototype” of the function Hopf algebra of a matrix group. More precisely, a matrix
group that is a subalgebra &1, determined by polynomial constraints corresponds to a
Hopf algebra which is a quotient of the described bialgebra by relations corresponding to
the constraints.

From here on we adopt the convention that we denote the Hopf algebra of functions on
a groupG by G. The class of functions we usually choose are the representative functions.
These are the functions that arise as matrix elements of finite-dimensional representations.
Furthermore we sometimes considec@njugationin this context. This is nothing but
ordinary complex conjugation.

Example 3.1. Consider the group S@). Its Hopf algebre5U(2) of representative func-
tions is generated by the matrix coalgelug with i, j € {%, —%} and relation (with the

notation= for £3)
_tyy — 1 41 = 1.

SU(2) has a (Peter—Weyl) bas{qg} with [ € %No andi,j € {—I,—1+1,...,1} with
tgo =1 andtijl/2 = tjj. Coproduct, counit, antipode and conjugation in this basis are given
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by

l l l l 7l l —m 1
Atpn = § :tmk® tkno €(mp) = mn, fn = Sthm = (=D""C ,—n
k

Example 3.2. Consider the group Spi8, 1) = SL(2, C) which is the double cover of the
Lorentz group S@, 1). Its Hopf algebr&pin(3, 1) of representative functions is the tensor
product of two copies 08U(2) whose generators we denote foy} and{zj}. However its
conjugation is different, as indicated by the notation for the generators. A Peter—We§/l basis
is thus given b){té, t'i’j .

Let {c*} denote the standard Pauli matrices

1 0
o%:= , ol:= 01 ,
0 1 1 0

Define the 2x 2 matrix 7T of generators by

__ ot
T = ],
f— Iy
and the elements

A" = St ToTT),

whereT T is transposition of the matrix composed with conjugation of its eleménts’}
generates precisely the sub-Hopf algeB@(3, 1) of functions on the Lorentz group. Note
that AHY = AV,

The surjectiorSpin(3, 1)— SU(2) corresponding to the injection $&) — Spin(3, 1)
is simply given byt! til]- andt’iﬁ > t_li (Note the different meaning of the conjugation in
source and target.s

Not only a Lie group, but also a Lie algehrgives rise to a Hopf algebra. More precisely,
its universal envelop(g) can be made into a Hopf algebra. This is achieved by equipping
the Lie algebra generators with themitivecoproductAn = n®1+1®n. This determines
a coproduct on the whole &f(g). The counit is given by (n) = 0 on the generators and
the antipode by $ = —». Note that{(g) is cocommutative. Furthermore, we sometimes
consider a conjugation. Then the Lie algebra can be considered as the complexification of
a real Lie algebra with the given complex conjugation.

Itis a remarkable fact of Hopf algebra theory that the Hopf algebras obtained from a Lie
group and its Lie algebra are dual to each other.

4 The term “Peter—Weyl basis” refers here to a decomposition in terms of irreducible finite-dimensional repre-
sentations and doemtinvolve unitarity in any way.
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Example3.3. Consider the Lie algebeai; with basisE, F, H and relationsf{, E] = 2E,
[H, F] = —2F,[E, F] = H. Conjugation isgivenbyy{ = —H,E = —F, F = —E. Its
universal enveloping Hopf algebtésu,) is dually paired withlSU(2) via

(H.th) =218, (E.thy =V U =n)U 41+ Ddpns1,
(F, i) = VA +n) =1+ Dépn 1.

Example3.4. Consider the Lie algebtas  with basisE, F, H, E, F, H. Apart from the
different conjugation (indicated in the basis) it has the relatioss o su; in the obvious
way. The pairing ol{(so3 1) with Spin(3, 1) is as inExample 3.3or the un-barred and
the same for the barred generators. The pairing between un-barred and barred generators is
zero.

For the elementgl*’ the pairing comes out as

(X, AM) = dtr(c" o (X)o"), (X, A®y = (X, ARy VX e {H, E, F),
where
o(H) = —0o3, o(E) = (o —i0?), o(F) = 3(ct +io?).

The injectionsu; < so3 1 corresponding by duality to the surjection Bkample 3.2s
givenbyE — E — F,F— F — E, H+— H — H. It extends td{(sup) — U(s031).

The simplest example of a Hopf algebra with non-trivial cotriangular structure (i.e.,
implying non-trivial braiding) is the following one.

Example3.5. LetZ), be the Hopf algebra of functions @. It has two elements, % with
relationg? = 1, coproductAg = g ® g, counite(g) = 1, and antipode = g. We equip
it with the cotriangular structure determined Ryg ® g) = —1.

Z/, is precisely the quantum group that generates the categ@drygfaded vector spaces
as its category of comodules. A comodufeof Z, splits into a direct sun¥p @ V1 of
even and odd part determined by the coactior g'*! ® v. This is the natural setting for
supergroups and super-Lie algebras. We start with more general definitions.

A braided Hopf algebras the analogue of a Hopf algebra in a braided category. That is,
it obeys the same axioms as an ordinary Hopf algebra except for the axiom of compatibility
between product and coproduct which is modified to

Ao-=(®)o(([d®y Qid) o (AR A).

Definition 3.6. Let A be an algebra in a braided categotyis calledbraided commutative
if - = o is anidentity of mapst ® A — A.

Dually, letC be a coalgebra in a braided categaryis calledbraided cocommutativié
A = ¢ o Ais an identity of map€ — C ® C.

Now, in the same way as ordinary Hopf algebras describe groups and enveloping alge-
brasZ,-graded Hopf algebras (i.e., braided Hopf algebras in the categ@tyaimodules)
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describe supergroups and super-Lie algebras. Thus supergroups are descfibeddued
commutative Hopf algebras and super-enveloping algebréfiyraded cocommutative
Hopf algebras. The latter case is more familiar. One usually considers super-Lie algebras.
Those give indeed rise to enveloping Hopf algebras precisely in the same way as ordi-
nary Lie algebras do, except that everything takes place itZthgraded category. Our
definition of supergroups might seem less familiar but is standard in the quantum groups
literature (see, e.48] where everny-deformations of supergroups were considered). It is
also much less complicated than analytically inspired definitions using auxiliary Grassmann
algebras.

In fact, one can generalize these considerations to arbitrary braiding employing the no-
tion of braided Hopf algebra mentioned above, gdeHowever, we shall limit ourselves
mostly to theZ,-graded case, occasionally generalizing to arbitrary symmetric braidings.
For non-symmetric braidings additional problems occur, most notably the absence of an
analogue oProposition 3.1Fas discussed ifection 4.3.

We are now ready to define the extension problems more precisely (disregarding for
now the requirement that the extension must not be a direct product, respectively, tensor
product). The conventional versigh), generalized to encompass, e.g., supergroups in the
above-mentioned sense can be formulated as follows.

Definition 3.7. Let H be a braided commutative Hopf algebra in a symmetric braided
category. Then, th&iangular group extension probleis the problem to find a braided
commutative Hopf algebr& in the category with a surjection : B— H. Any suchB is

said to be aolutionof the problem.

In the ordinary group case the underlying category is just the category of vector spaces
and the braiding is simply the interchange of the tensor componéhts thus an
ordinary commutative Hopf algebra which encodes the algebra of functions on a group.
In the supergroup case the category is thaZefgraded vector spaces and the braid-
ing is the interchange with an additional minus sign if both components are odd. Thus,
H is a graded commutative Hopf algebra which encodes the algebra of functions on a
supergroup.

The quantum group extension probl¢®) takes the following definition.

Definition 3.8. Let H be a coquasitriangular Hopf algebra. Then, goantum group ex-
tension problenis the problem to find a coquasitriangular Hopf algebnaith a surjection
7w . A— H. Any suchA is said to be &olutionof the problem.

For the following discussion of reconstruction we require the analogue of a semidirect
product of groups for Hopf algebras. This is provided by the following theorem and its
variants. Their significance will become clear in the next section.

Theorem 3.9 (Majid [9,10]). LetH be a coquasitriangular Hopf algebrB a braided Hopf
algebra in the braided categofy.M of left H-comodules. Thethere exists a Hopf algebra
B x H, called the bosonization of,Buch that the category of left comodulesBok H is
monoidal equivalent to the category of braided left comodules ofBAu.
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Explicitly, B x H is isomorphic toB ® H as a vector space. Its prodycoproductand
antipode are given by

bRh)(c®g) =R ® h(l))bqg] ®hog,
Ab®h) = (ba) ®boihw) ® (b ® hw),
S(b ® h) = R((Spbp2)i) @ (S (b[117)) 1)) (Spb2))[21 ® (Su (b1jh))2)
forb,c € Bandh, g € H. Here the coaction of H on B is denoted by— bj1) ® byz].
Furthermorethere is a Hopf algebra surjection : B x H— H definedby®h +— € (b)h
and an injection : H < B x H defined by: — 1® h such thatr o i = id. Conversely

letr : A— H be a Hopf algebra surjection. Then Ais a bosonizatios B x H for some
B if and only if there is an injection: H — A such thatr o i = id.

Proposition 3.10. Inthe context ofTheorem 3.&ssume that H is cotriangular and that B is
braided commutative. TheR x H inherits a cotriangular structure from H by pull-bagle.,

R((b®h) @ (c®g) :=Rulh®g(b)e(c).

Furthermore the equivalence of categoriesTéfeorem 3.9%ecomes an equivalence of
braided categories in this way. In particulaB x H— H is a quantum group extension in
the sense dbefinition 3.8

For the pairing of bosonizations we need the following lemma.

Lemma 3.11. Let A be a coquasitriangular Hopf algebra @i a quasitriangular Hopf
algebra which are dually paired vidi ® A — C. Let B be an A-comodule braided
Hopf algebra and D an H-module braided Hopf algebra such that they are dually paired
as algebra/coalgebra and coalgebra/algeBr&urthermore we demand the compatibility
condition of action and coaction

(he>d,b) = (h,bay){d,bp) VYhe HbeB,deD.
Then the bosonization® x H and B x A are naturally dually paired via

(d®h,b®a):=(d,bylh,a) Yhe Haec A beB,deD.

As an example of how the bosonization construction reduces to an ordinary semidi-
rect product for groups and Lie algebras we consider the Poincaré group and its Lie and
(enveloping) algebra as well as their pairing.

Example 3.12. In the context oExample 3.Zonsider the Hopf algebidink of (polyno-
mial) functions on the translation group of Minkowski space. It is generatda/yas a
free commutative algebra with coproduct, antipode and conjugation

Axt=x"Q@1+1®x", Skt = —x#, = xh.

5 Note that we take the ordinary pairing here and not the type of pairing usually employed in braided categories.
In particular, note thaB and D do not live in the same braided category.
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Itis a (trivially braided)Spin(3, 1)-comodule Hopf algebra via the coactiof — ) A*"
® xV.

The Hopf algebra of functionBoinc on the covered Poincaré group is the bosonization
Mink x Spin(3, 1). As an algebra it is the commutative algebra generate8gig(3, 1)
andMink. The coalgebra structure and antipoderjais that ofSpin(3, 1). The coproduct
and antipode fox* are given by

Axt =x' @1+ Y A" @x", St == (SAM)x".
v v

Note that the sub-Hopf algebra generated{¥, A#"} is the uncovered Poincaré group
Mink x SO(3, 1).

Example 3.13. In the context ofExample 3.4let tt4 denote the abelian Lie algebra of
translation generators in four dimensions with bd$t¢} and real structur®* = P*.
Its universal enveloping Hopf algebif(trs) is a (trivially braided){(so3 1)-module Hopf
algebra by the action

1 _ _
XoPl=7 Y tr(e’o(X)o")P',  XvP'=XvPF VX e(H E F)
v

The semidirect product of the Lie algebras is the Poincaré Lie algebra. Correspondingly,
for the enveloping Hopf algebréfpoinc) = U(trs x s03.1) = U(trg) x U(s031).

U(trs) andMink are dually paired viaP*, xV) = §"*¥. As this pairing is compatible with
the action of4(so3 1) and coaction oBpin(3, 1) in the sense ofemma 3.11it induces a
pairing between the Hopf algebrégpoinc) andPoinc.

4. Reconstruction of quantum group symmetry
4.1. Poincaré symmetry and Bose—Fermi statistics

Let us reconstruct the relevant braided monoidal category (and quantum group) for a
quantum field theory that is Poincaré symmetric, has Bose—Fermi statistics, and obeys the
spin—statistics theorem. In fact, we simplify the discussion slightly by only considering the
SU(2) subgroup of? since it exhibits already all the relevant features. We come back to the
full Poincaré group at the end. The construction proceeds in three “layers” corresponding,
respectively, to the statistics, the symmetry group, and the spin—statistics relatibiy,. See

The first layer (the outermost boxlifig. 1) is an underlyindZ,-grading. More precisely,
we consider the braided categoryZf-graded vector spaces. This distinguishes Fermions
from Bosons and carries the Bose—Fermi statistics. Reconstructing the quantum group that
generates the category, we obtain the function Hopf algébwaf the groupZ,, but with
the non-trivial cotriangular structure, describedEixample 3.5The cotriangular structure
provides the braiding

Ywew) =1y e,

which encodes Bose—Fermi statistics.
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spin-statistics relation

(super) Poincaré symmetry

Bose-Fermi statistics [Zo-grading]

Fig. 1. The three layers of the reconstruction of the quantum group symmetry. They correspond to successive
restrictions of categories.

The second layer (the intermediate solid boxXig. 1) is the symmetry group, in this
case Sl§2). We wish to restrict our category @h»-graded vector spaces to those spaces
that are representations of the group(8Uas well. Furthermore, we require the group
action to respect the grading. This means that we can vie{2)S$ living in theZ,-graded
category itself. More precisely, taking the quantum group point of view, the correspond-
ing function Hopf algebr&U(2) is an object in the category. It is purely even under the
Zp-grading. The braided category which encodes both the Bose—Fermi statistics as well as
the SU2)-symmetry is then the subcategory of comoduleS0{2) insidethe category
of Z,-graded vector spaces. However, according to the reconstruction theorem we can ex-
press the braided category as a category of representations of just one quantum group. We
are here precisely in the situation Bificorem 3.9and Proposition 3.1@vhich tell us that
this quantum group is obtained frafj andSU(2) by a kind of semidirect product, called
bosonizatiorSU(2) x Z5. In the case at hand this reduces just to the ordinary tensor product
SU(2) ® Z,, sinceSU(2) is purely even, i.e., trivial as a representatiorZgf Using the
basis 0fSU(2) given inExample 3.1he tensor produ@U(2) ® Z, has a basiStr’nn, t,lmg}.
Its coquasitriangular structure is given by

R(thng* @ 1!, 8" = (=1 ¥ .

The third and final layer (the innermost solid boxFkig. 1) consists of removing those
representations that have the wrong spin—statistics relation. We only allow representations
where either the spin-labelis integer andZhedegree even or the spin-label non-integer and
the Z,-degree odd. The coaction for a spinrepresentation thus must take the
form

Uy > Zt,lmgz & vy.
n

Allowing only representations of this form is equivalent to restricting the Hopf algebra
SU(2) ® Z, to the sub-Hopf algebra spanned p,,¢?}. More generally, restricting a
monoidal category to a monoidal subcategory corresponds by Tannaka—Krein reconstruction
exactly to restricting a Hopf algebra to a sub-Hopf algebra.
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By renaming the eIemerﬁngI with ¢4, we recognize that the Hopf algebra we arrive atis
nothing butSU(2) again. However, the coquasitriangular structure we obtain by restriction
from SU(2) ® Z, is not the canonical (trivial) coquasitriangular structur8of(2). Instead,
it is given by

R(trlnn ® tr[,;/n/) = (_1)4”,8mr15m/n/- (3)

To make this distinction clear we denote the new coquasitriangular Hopf algeBid/ t8).
It is precisely the one that was already found[@ by considering spin and statistics
symmetries directly.

The construction generalizes to double covers of space-time symmetry groups. Thus, as-
sume a given space—time symmetry gréuprhose universal cover (i.e., quantum mechan-
ically relevant symmetry) is a double cov@r Then, the function Hopf algebra decomposes
into a direct sunG = G, ® G with G = G of functions that are symmetric, respectively,
antisymmetric with respect to interchange of the sheets of the cover. As the direct sum is
a direct sum of coalgebras this introduces a grading on the representations which corre-
sponds precisely to spin (i.e., grading in integer versus half-integer spin). Assuming the usual
spin—statistics relation we obtain as ab@viself as the relevant symmetry quantum group
but with the cotriangular structure of the following lemma. This genera{ZeSee als¢6].

Lemma4.l. Let H be a commutative Hopf algebra whicl¥is-graded as an algebra into
a direct sum of subcoalgebrd$ = Ho @ H;. Then

R(f ®g) = (—DEle(fre(g), 4

where| f| is the degree of f with respect to the gradidigfines a cotriangular structure
on H.

In particular, for the (covering) Lorentz gro@pin(3, 1) and the full Poincaré group
Poinc the grading is given byr| = |if| = 2/ (mod 2) and|x*| = 0. We denote the
versions with the cotriangular structu@) by Spin’(3, 1) andPoinc’, respectively.

Remark 4.2. There did not seem to be any intrinsic reason to puZfwgrading encod-

ing the Bose—Fermi statistics “below” the conventional symmetry group. The bosonization
appearing above really is just an ordinary tensor product. However, when we go to super-
symmetric groups such as the super-Poincaré group this is no longer true. In this case the
reconstruction really requires tie-grading to lie “below” as now the group is non-trivially
graded. Se&ections 4.3 and 4.4

4.2. The dual context

As itis more familiar to physicists we also describe the dual context with Lie algebras and
universal enveloping algebras. Thus gdte the Lie group of a space—time symmetry group
G as considered above. Its universal enveloping Hopf algkfigais dually paired with
the function Hopf algebr& as well as with the function Hopf algebra of the double cover

G. We can describe comoduleséfalternatively as modules of(g). However, the global
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information about the difference betweéhand G that contains the information about
(integer versus half-integer) spin is lost. But we can recover the information by adjoining
an elemeng tol(g) with £2 = 1 which commutes with all other elements and has coproduct
A& = £ ® £. We extend the pairing witts by defining

& f) =Dy VfeG.

The action o on arepresentation should yield the eigenvalyeslidepending on whether
spinis “integer” or “half-integer”. To ensure this we need to formally ideriifyith (—1)€,
whereC is a suitable operator having even/odd eigenvalues on “integer”/“half-integer”
spin representations. (Note that given such an operétdn© is automatically central,
idempotent, and group-like.)

Following the construction above then leads to this versidi(gf as the spin—statistics
reduced (dual) quantum group with the non-trivial triangular structure given by the following
lemma.

Lemma 4.3. Let A be a cocommutative Hopf algebra with a central elenjesttisfying
g2 =1andA¢ = £ ® £. Then it admits a triangular structure

R=31®1+1Q:+£01-£Q%). (6)

Thus, we see that we can do everything in the dual enveloping algebra context as well,
though at the price that the global structure needs to be added by hand. This is one reason
why we prefer the function algebra setting.

In fact, we could have performed the reconstruction from the beginning in the enveloping
algebra setting. Then, the eleménfcorresponding to the elemegtgeneratingC’(Zz))
would have come from the (dual) bosonization construction for the enveloping algebra.
The final step of the spin—statistics reduction then precisely corresponds to identifying

&= (-1C.

Example4.4. Inthe context oExample 3.3ve adjoin the elemem§ttol/(suy) as described
above which we formally equate with-1)€, whereC := 4EF+2H + H?. Since(C, t},) =
4l + )6, We get

(&, trl‘nn) = (_l)4l(l+1)8m,n = (_1)2]8m,n

as required. We denote this version of the enveloping algebra with the triangular structure
(5) by U’ (sup).

We proceed similarly foExample 3.4and defind{’(so3 1) with the operatoiC + C,
whereC is as defined above and equéte: (—1)¢*C.

We define the bosonizatid@d' (poinc) = U(tra) x U’ (s031) analogous t&Example 3.13
where¢ acts trivially onP#.

4.3. Formalized reconstruction

We now formalize and generalize the procedure of reconstructing the symmetry quantum
group, exposing more clearly the role of the different layers. (This section is somewhat more
technical and can be omitted by non-experts.)
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The first layer is as before the underlying statistics. We generalize it fréfagrading
given byZ’, to an arbitrary cotriangular Hopf algeha Thatis, the statistics is now encoded
by the category of (leftf7-comodules” M. Cotriangularity implies that the braiding is
symmetric, i.e., the braiding and its inverse are identical. This is in fact the limit of validity
of the traditional separation of spin and statistics: When the braiding is non-symmetric
such a separation is no longer possible. This is essentially bePaogesition 3.1@loes
not generalize to the coquasitriangular case. To put it differently: The bosoniZatioH
admits an induced coquasitriangular structure figrm general only ifH is cotriangular.

For the second layer, the symmetry, we require now a braided commutative Hopf algebra
B in # M. This generalizes the concepts of group and supergroup to arbitrary braiding.
Again, usingTheorem 3.9and Proposition 3.10the quantum group that generates the
braided category of representationsioinside” M is the bosonizatio® x H.

For the third layer, a spin—statistics relation obviously requires that we have a “spin” that
we can put in correspondence with the statistics. In the previous section that came from the
group SU?2). In fact, the only relevant part of it (integer or non-integer spin) is encoded in
the subgroufZ, of SU(2). More generally, we need the same (quantum) group as the one
encoding the statistics but now as a quotient (“subgroup” in group language)wbther
words, we require a surjection of braided Hopf algelrasB— H in M, whereH is
trivial as anH-comodule.

To impose now the spin-statistics relation we observe that the surjecti@ H gives
rise to a surjection of cotriangular Hopf algebras

6:B:=BxH—»HxH

upon bosonization. In facH x H = H ® H since the coaction off on H was taken to

be trivial. For an arbitrary objedt in the category of3-comodules, spin and statistics are
given by the induced coaction éf ® H. Denoting the coactionbg : V — B ® V this
induced coaction is given by := (6 ® id)o 8 : V — H ® H ® V. To understand what it
means to satisfy the spin—statistics relation let us think for a moment in the more familiar
language of groups. Thus, let us think that (the duaoflefines an action of two copies

of the spin—statistics groug on V. Now, V obeys the spin—statistics relation if it is in
the same representation with respect to both copi€s. éffe can express this formally by
saying that the action @ x G factors through the action of a single copy®by the group
multiplicationG x G — G. Translating this back to the quantum group language means
that the image of must liein(AH) ® V, whereA H is the image off in H ® H under the
coproduct. This is precisely ensured by restrictihtp the largest sub-Hopf algebrac B

so thaté (A) € AH. In fact, A is not, in general, the preimage 1(AH) as this is not
necessarily a Hopf algebra. One can derive a stronger condition directly from the properties
of a comoduléeV. In fact, it is not enough that satisfies the spin—statistics relation in the
form A(V) € (AH) ® V. But applying the coproduct several times (or alternatively the
coproduct onH ® H) the corresponding condition must hold for any copyb® H that
appears in the image. This leads to the conditidr® 6 ® id) o A2(A) CAQAH ® A

which defines a bialgebra. As we require a Hopf algebra we need to impose the even more
restrictive conditioniid ® & ® id) o0 A%2(A) € A ® (AH Nt(AH)) ® A, wherert is the
transposition map. This corresponds to requiring for a modulet also its dual satisfies the
spin—statistics relation. We callthespin—statistics reductionf B and formalize as follows.
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Definition 4.5. Let H be a cotriangular Hopf algebra. Let: B— H be a solution of the
triangular group extension problem/ioM, whereH is equipped with the trivial comodule
structure under itself. Consider the induced miapB := Bx H—~H x H = H® H.
ThenA C B defined as the subspace satisfying

((d®6Qid) o A2(A) CA® (AHNT(AH) Q A (6)

is a sub-Hopf algebra called the spin—statistics reduction.

4.4. Extensions

We now turn to the question of whether and how a group extension in the conventional
(or triangular) sense gives rise to a quantum group extension.

Let us consider the Bose—Fermi case first. Thus, we hagegraded Hopf algebr®
(e.g., the ordinary Poincaré group which is just trivially graded) afig-graded extension
C of it (e.g., the super-Poincaré group). That is, we hav&-araded group extension
C— Bin%M.In general, we have some cotriangular Hopf algefrin place ofZ), and
o . C— Bis atriangular extension in the sensdafinition 3.7 On the other hand, both
andC are also solutions to the extension problem for the “spginds a trivial comodule in
H M. Thus, we have surjections; : B— H andoc : C— H aswell andsc = opop. The
categorical equivalence éfroposition 3.10ifts these to surjections of cotriangular Hopf
algebral’ xH-»Bx H—-H xH=HQH.

We now apply the spin—statistics reductiorbafinition 4.5 Denote the reduced quantum
groups byB’ andC’. The image of”’ obviously satisfies the reduction condition itself and
thus we have amafi’ — B’ as the restriction of x H— B x H. However, this map is not
necessarily surjective. Thus, we do not necessarily obtain a solution of the quantum group
extension problem, but something weaker. The triangular extension could behave “badly”
with respect to the spin—statistics relation.

5. Nothing beyond supersymmetry

In this section, we perform in a sense the opposite operation to the reconstruction of
Section 4.4We show, for the case of Bose—Fermi statistics, that any solution of the quantum
group extension problem can be induced from a solution of the triangular group extension
problem. Returning to the initial question whether a unification of external and internal
degrees of freedom beyond supersymmetry is possible, this implies a negative answer.
More precisely, any extension of the symmetry quantum group of ordinary quantum field
theory (in at least three spatial dimensions) can already be obtained through the known
(supersymmetric) ones.

We first consider the special case where the quantum group to be extended is just the spin
(and thus also statistics) generating one. This is our main theorem.

Theorem 5.1. Letr : A— Z), be a solution of the quantum group extension problem for
Z,. Then there is a solutions : B— Z, of the Z»-graded group extension problem in
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M, whereZ), coacts trivially on itself such that A is the spin—statistics reduction of
B % Z,.
2

Proof. Define the spac& = A ® Z, and a surjectiors : B > 7Z>Q® Z, given by
a® h— m(aw)) Q@ m(aw)h. This gives rise to the sequence

827, 2,27, 7

We give B the tensor product coproduct structure, the subalgebra structuresuod Z,
and the cross-relations induced by the pull-back of the cotriangular structidrg dhis
makes(7) into a sequence of cotriangular Hopf algebras. (Note that the coquasitriangular
structure orZ; ® Z/2 is thus trivial on the first component, hence the notation without the
prime.) Now consider the injection of cotriangular Hopf algebrasz), — B given by
h +— 1®h. The surjectiorB — Z, . (e®id) o invertsi. Thus, according tdheorem 3.9
there is a braided Hopf algebgain the category of lefZ,-comodules so that = B % Z,.
We can recoveB (as an algebra) &3 B and observe that on this space the riagstricts
to the subspacg,; ® 1 of Z; ® Z,. IdentifyingZ, ® 1 as? (Z2 ® Z),) we obtain precisely
a surjectiornr : B— Z» as required.

It remains to show that is the spin-statistics reductiotf of B. For this observe that
the condition(6) of Definition 4.5implies (id ® 5 ® id) o A%2(A’) € B ® (AZ,) ® B. This
in turn implies for an element® 1+ b ® g in A’ that(a) ® 1) ®1Q (a@z) ® 1) + (b)) ®
9 ®g®(bp ®g) € B®1® B by composition with id® (- o (S® id)) ® id. Thus,
b = 0and it follows thatdA” C A. Onthe other hand, clearly C A’ and thusA = A’. This
completes the proof. O

The case of a general extension is obtained by considering two extensions of the
spin generating grou@@’, with a surjection and then observing that the surjection sur-
vives the transition from the quantum group context to theg-graded group
context.

Proposition 5.2. In the context ofTheorem 5.1consider two solutions of the quantum
group extension problem with a surjectidn— A— Z5,. Then there is an induced surjection
between the correspondirip-graded groupsB’— B—» H. Thus to the quantum group
extensiord’— A corresponds th&,-graded group extensioB’— B.

In the case of ordinary quantum field theory the symmetry to be extended is the Poincaré
groupB = P and it corresponds to the quantum grodip= P’ introduced inSection 4.1
(i.e., the Poincaré group with the cotriangular struc¢dje The statement of tHeroposition
5.2is now that any solutiom’— P’ of the guantum group extension problem is induced
from a solutionB’— P’ of the Zo-graded group extension problem. But this is nothing
but the supergroup extension problem describeSdntion 1 Thus, for ordinary QFT all
the solutions of the quantum group extension problem are induced from solutions of the
supergroup extension problem. The analysigdfremains exhaustive in our generalized
framework.
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6. Examples and applications

In this section, we wish to demonstrate the usefulness of quantum geometric meth-
ods to supersymmetry. Notions of homogeneous space, quantum principal bundle, exterior
derivative, all generalize from ordinary geometry to quantum geometry. In particular they
apply to supergroups, superspaces, super-derivatives, etc. Constructions in quantum ge-
ometry are just as easy for “super”-objects as they are for ordinary objects. Furthermore,
they generalize far beyond tl#-graded case (although we shall not consider this here),
see in particulaf5]. For example they apply to more general anyonic and braid statis-
tics, sed6]. An application to fractional supersymmetry which fits into this framework is
[11,12]

6.1. Elements of quantum geometry

We start by introducing the basic notions and give elementary examples (from ordinary
geometry). This section is mostly text book knowledge,[$¢E3]. For quantum principal
bundles sefl 4], although our version here is more elementary. For statements from ordinary
differential geometry, see, e.[d.5].

Definition 6.1. Let H be a Hopf algebrag : P — P ® H aright H-comodule algebra.
SetB := P¥ = {p € P|B(p) = p® 1} and definey : P® P - PR Hby x =
(-®id) o (id ® B). If x is surjective we call the tripl¢ P, B, H) a quantum principal
bundle

To see how this definition reduces to the usual one for ordinary principal bundles consider
a groupG acting on a manifoldt. This gives rise to a coactigh: C(E) — C(E) ® C(G).
The surjectivity ofx then means precisely that the mé@px E — E x E defined by
(g, p) — (gp, p) is injective, i.e., thaG acts freely and thus defines a principal burftle.
The base spac¥ is the space of orbits af in E andC(M) is preciselyC(E)°(©),

Definition 6.2. Let : A— H be a surjection of Hopf algebrad.is a right H-comodule
algebra byBr = (id ® ) o A and a leftH-comodule algebra bg. = (x ® id) o A. The
spaceA” = {a € A|Br(a) = a ® 1} forms a leftA-comodule algebra via the coproduct
of A (and thus also a left’-comodule algebra vig, ). It is called aguantum homogeneous
space

Again we consider how this definition reduces to the one for ordinary homogeneous
spaces. LetG — K be an injection of groups. This gives rise to a surjection of Hopf
algebrasr : C(K)— C(G). The functions on the homogeneous sp&ge&; by the induced
action of G on K are precisely the functions ak invariant under this group action, i.e.,
C(K/G) = C(K)C9 . In particular, a homogeneous space gives rise to a principal bundle.

6 Infact, it is also necessary th@tacts properly. This is a somewhat technical condition, strongly related to the
class of functions we consider. It is satisfied for “good” cases such as @hgcompact. We thus consider this
condition as “not being visible” in our algebraic setting.
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Remark 6.3. Given a Hopfalgebra surjectioh—~ H we obtain a quantum principal bundle
(A, A" H). Furthermore, this bundle is left-equivariant, i.e.A carries a left coaction
by A itself which commutes with the right coaction Af and thus descends # .

This is in exact analogy to the situation in ordinary geometry.

Remark 6.4. Given a coquasitriangular Hopf algebfa and a braided Hopf algebra in

H A\ the bosonization gives rise to a Hopf algebra surjecBor H— H (seeTheorem

3.9). In particular, we obtain a quantum homogeneous space. In fact this precisely recovers
B itself (as an algebra® = (B x H)".

This generalizes the situation of a semidirect product of Lie groups giving rise to a
homogeneous space.

Remark 6.5. Note that for a homogeneous spa€gG the principal bundl€K, K/ G, G)

can be identified with (a reduction of) the frame bundlednG. Furthermore, ifK /G is
Riemannian such th& consists of isometries, the bundl&, K /G, G) can be identified

with (a reduction of) the bundle of orthonormal framestonG. Now, if K /G is orientable

the bundle decomposes into two connected components (corresponding to the two possible
orientations). We take the one corresponding to the orientation preserving subgr&up of
and denote itK’, K/ G, G'). K /G admits a spin structure i’ admits a double covef .

The spin bundle is the(K , K /G, G), whereG is the corresponding double coverGf.

Example 6.6. Considers? as the homogeneous space(3PSO2) = SU(2)/U (1). The
injection U (1) — SU(2) becomes a surjectioB8U(2)— U(1) from the quantum group
point of view. U(1) has a (Fourier, i.e., Peter-Weyl) bagis’} with m € Z, coproduct
Ag" = g™ ® g™, counite(g) = 1, and antipode &" = ¢g~". The Hopf algebra surjection
is given by

trlnn = mesmn 8)
in the basis oExample 3.1for SU(2).

The surjectior(8) induces the right coactiaf},, — .,,® g2 of U(1) onSU(2) leading
to the algebr&? as its right invariant subspace. A basis of it is giver{tfm} with [ € Np.
These are precisely the spherical harmonicsén

2Note that according tBRemark 6.5ve can view(SU(2), S2, U(1)) as the spin-bundle on
Se.

We now turn to the concept of quantum differentials that generalizes the concepts of
differential 1-forms and vector fields to the quantum geometric realm.

Definition 6.7 [16]. Let A be a Hopf algebra. Le®2 be a bicovariant bimodule ovet.
That is, a left and righ#A-module and a left and right-comodule, such that actions and
coactions commute in the obvious ways. Assume there is a bicomodule map-¢ 12.
That is, d is a left and rightt-comodule map. If the Leibniz rule

dab) =d(a)b+ad(®) Va,be A
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holds and the map ® A — £2 given bya ® b — a db is surjective, then we cal a
(bicovariant first-orderjlifferential calculus

Proposition 6.8 [16,17] Let A and H be Hopf algebras that are non-degenerately dually
paired. Thendifferential calculi on A correspond to subspacedof H' ;= kere C H
with the following properties:

(a) L is invariant under the left coaction of H defined by n1) ® ne —n ® 1. Thatis
the coactionH’ — H ® H’ defined in this way descendsito> H ® L.

(b) L isinvariant under the left action of H given by n = h1)nSh(2). That is the action
H ® H' — H’ defined in this way restricts td ® L — L.

The space L can be thought of as the space of right-invariant vector fields that act on A
as “derivatives” from the right via

L®A— A:n®ar d(a) = (n,aq))ae)

forn € L anda € A. Dually, I" := L* is the space of right-invariarit-forms I" carries a
left action of A determined by the coactia) via

<T}, ar (L)) = (’7(1)! a)(n(Z)s 0)) - (’77 a)<1a 0))

fora e A,neL,we I'. T carries a left coaction — w[1) ® wpz] of A determined by
the action(b) via

(h, p11)(n, wp21) = (h@ynSh), )

forh € H,n € L,w € I'. The corresponding differential calculyg on A is isomorphic
to I' ® A as a vector space. Its right A-module and comodule structure are given by
multiplication and comultiplication on A. Its left A-module and comodule structure are the
tensor product ones. The malds recovered from the derivative @$a) = ), w;9,,(a)
with n; a basis of L andy; the dual basis of".

The left coactiom — n1] ® npz) of A on L that makes the derivative mag® A — A
covariant is determined through the action of condit{bhby

(Sh, naying) = haynShe)
forhe Hyne L.
Remark 6.9. Let G be a Lie group ang its Lie algebra. We set = C(G) andH = U(g)

above and recover the usual differentials with= g. Note that the coaction of condition
(a) becomes trivial while the action of condition (b) is by the Lie bracket.

Example6.10. Consider the dually paired quantum grods$(2) andi/(suy) described in
Example 3.3The ordinary tangent spaceis with basist, F, H leading to the derivatives

O (1) = 2Myy, Bty = V(L —m + D +m)ty,_y .
Ity = VA +m+ DI —m)t, 4 ,.
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Note that this result extends to the dually paired quantum gr8pps(3, 1) andi{(so3 1)
precisely as in the transition froExample 3.30 Example 3.4

Example6.11. Consider the dually paired Poincaré grdeginc and its Lie algebraoinc
of Examples 3.12 and 3.18he derivatives given byoinc onPoinc come out as iexample
6.10supplemented by

ax(x*) = %Ztr(o”a(X)a”), dg(x")y=09x(x*) VX e€{H,E,F},

dpu(thy) = 0puly) =0,  Bpu(x”) = 8.

6.2. Semidirect superextensions

In this section, we consider semidirect superextensions which are simple examples of
superextensions. These serve at the same time as a preparation for the more involved su-
perextensions considered later.

For our present mathematical purposes we give the following definition of “superextension”
as a minor modification dbefinition 3.8

Definition 6.12. Let H be a coquasitriangular Hopf algebra. Thenis called afinite
non-trivial extensiomr superextensioof H if (a) A— H is a surjection of coquasitriangular
Hopf algebras, (b) there is no Hopf algelifasuch thatA = H ® K as a Hopf algebra and,
(c) A" is finite-dimensional.

Remark 6.13. In the quantum principal bundle pictut, A¥, H) condition (b) corre-
sponds to the bundle being non-trivial. Condition (c) says that the algebra of functions on
the base space is finite-dimensional or the base space itself “zero-dimensional”. Physically
speaking it means that the number of superfield components is finite.

We shall be interested in the case whétés a cotriangular Hopf algebra of the type of
Lemma 4.1as this is the physically interesting situation (Sstion 4. Dually, we shall
as well consider dual superextensions (defined in the obvious way) for triangular Hopf
algebras of the type dfemma 4.3

An important (well known) supergroup is the analog of the translation grouRon
defined as follows.

Lemma6.14. Let®, be the unital algebra generated b4, .. ., 6,} with relationsg; 6; =
—0;0;. Itis Zp-graded by|1l| = 0, |6;| = 1. It extends to &,-graded commutative Hopf
algebra by the coalgebra structumed; = 1 ® 6; + 6; ® 1. Counit and antipode are given
bye((?,-) =0 andS@i = —0;.

Furthermore @, is self-dual via the pairing generated K8, 6;) = §i; I

7 Note that we take the pairing here in the usual sense for Hopf algebras and not the usual sense for braided
Hopf algebras. That is, we requitg¢, vw) = (¢1). v){$2), w), etc. and not withp1), ¢(2) interchanged.
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We are now ready to consider semidirect superextensions.

Proposition 6.15. In the context of emma 4.1let V be a finite-dimensional comodule of
H such that for the coactiofi : V — H ® V the conditiond(V) C H1 ® V holds. Then
Oy = 0, with {01, ..., 6,} a basis of V is a braided H-comodule Hopf algebra

Furthermore the semidirect produgbosonization®y x H is a superextension of H. It
is generated as an algebra by H afdwith relationss;6; = —6,6; andh6; = (—1)!"16;h.
The coalgebra structure on the H is the given one andfave have

Ab; =60; @ 1+ B(6;).

Corollary 6.16. Let H be a commutative Hopf algebra generated by the n-dimensional
matrix coalgebra T and equipped with the cotriangular structure

R(tij @ t) = —€(tij)e(t) = —8jjdki. 9

Then ©,, is a(braided H-comodule Hopf algebra

Furthermore the semidirect produdbosonization®,, x H is a superextension of H. It
is generated as an algebra byande with relationsf;0; = —6,6; and9;tx = —fjkf;. The
coalgebra structure on thg is the matrix coalgebra structure while fér we obtain

AG =0, @1+ ) 1 ®6;.
j

Remark 6.17. Note that while the above seems to be adapted to real matrix groups it works
equally well for complex matrix groups. In that case, double the range of the indices and
definet 1, j1, =1t ; and set; j1, =0=1ti1p ;.

We can equally consider the dual setting with the “enveloping algebra” counterpart of
H, although we need to adjoin an extra generator in this case as describection 4.2

Proposition 6.18. In the context of emma 4.3given an n-dimensional A-module V with
basis{Q1, ..., Q,} such that ~ O, = —Q;, it extends to th¢braided A-module Hopf
algebra®y = 0,,.

Furthermore the semidirect produdbosonization®y x A is a dual superextension of
A. Itis generated as an algebra by A afig¢ with cross-relations aQ= (a(1)> Q;)a)Va €
A. For primitive elements of A the latter take the commutator ffrQ;] = a > Q;. The
coalgebra structure on A is the given one and fgrwe obtainAQ; = 0, ® 1+ £ ® Q;.

Example6.19. Consider the superextensién x U’ (suy), where®; is in the fundamental
representation. Explicitly, we denote a basi®afby { 0.} and define the action with(X)
given as inExample 3.4as

XeQi=)Y o(X)iQ; VXel{H E F}
j
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or explicitly,

E>Q4 =0, EvQ_ =04, FoQp=0-,
Fr0Q0 =0, He Qi =+04, E> Q0+ =—0+.

The cross-relations are immediate from that:

[E7 Q-‘r]:oﬂ [E’ Q—]:Q'i" [Fv Q-‘r]:Q—»
[F,0-]1=0, [H, Q1] = £0x, £Q+ = —0+&.

Example 6.20. The pairing of®, x SU’(2) and®, x U'(sl) (usingLemma 3.1) leads
to the natural quantum tangent space with bdsi¥, H, O+, Q_. The corresponding
derivatives are the ones Bkample 6.1@&xtended by

d0y) =6_,  9p(0_)=0,  9p@By) =0,  IpO_) =64,
du(0s) = +0x, o, (th) =0,  99,(04) =1,
dp, (6-) =0, dp_(04+) =0, do_(6-) = 1.

For homogeneous spaces we can easily obtain their extensions to superspaces corresponding
to superextensions of the group. This is simply the corresponding quantum homogeneous
space.

Example 6.21. Analogous to the ordinary 2-sphere as a homogeneous space(af SU
(Example 6.5 we can build a supersymmetric version as the quantum homogeneous space
of ®, x SU’'(2) via the surjectionr : @, x SU'(2)—» U(1). We call this thesemidirect
super-spherer is simply given by the extension mag, x SU’(2)— SU’(2) composed
with the usual surjectioBU’(2)— U’(1) given by(8). Note that this is a cotriangular Hopf
algebra map upon choosim(g” ® g") = (=)™, on U’ (1) (hence the prime in the
notation) corresponding t&' (1) covering itself twice. Now the semidirect super-sphere
is simply the subalgebnﬁ% of @, x SU’(2) which is (right) invariant under the coaction
induced byr. Thatis, it is the subalgebra with bagis. ! 6., 6.1 6.6},

Note thatS% is a left®, x SU’(2)-comodule algebra (via the coproduct) by construction.
It gives rise to a quantum principal bundi®, x SU’(2), S2, U'(1)) (seeRemark 6.3
Upon “reducing the base space”$3 it becomes the spin-bund(&U’(2), S2, U'(1)) of
S2. Thus, we can view it as the spin-bundleS:

6.3. Matrix supergroups

We now consider more complicated superextensions which are super-analogues of matrix
groups. These are well known in the theory of supergroups, sed18]g(However, our
setting is closer in spirit t¢19].) Much of their treatment here is along the lineg®8]

(where even more general braidings are considered). However, the “physical” quantum
group versions of supergroups (motivated fréaction 4 seem not to have been considered
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previously. In particular, the quantum group versid’im|n) as well as the treatment of the
OSpsupergroups in this context appear to be new.

Let m, n be natural numbers. Conside#Za-graded vector spacgé with basis{v;} for
i €{1,...,m+ n}suchthaty;| := |i| with

" 1 ifie{l ...,m},
1 =
0 fie{m+1,...,m+n}

Assume further that a graded commutative Hopf algebra (i.e., a supergibw@ogcts
(graded) from the left ofv. Explicitly, v; — Z/ ujj ® vj. As the coaction is graded the
grading on the elementsjj} must be given byuij| = |i| + | j|.

Conversely, in order to construct such a graded commutative Hopf algebra, we start (ex-
actly as we would do in the theory of matrix groups) with the universal graded commutative
bialgebra that coacts d.

Definition 6.22. Consider the matrix coalgebra generated:dny} withi, j € {1,...,m +

n}. It becomes &,-graded coalgebra (i.e., coproduct and counit respect the grading) by
defining|uj| := |i| + | j| (mod 2 understood). Next, consider its tensor algebra and extend
the coproduct to it as a graded algebra map. We obtain a graded bialgebra. Finally, we
quotient by the graded commutativity relation

uijig = (— 1)UL

As this is compatible with the coproduct we obtain a graded commutative bialgéhria).
We call it thematrix super-bialgebraf rank (m|n).

Note that we can quotient by the relatians= 0 for |i| # | j| to obtain a tensor product
of purely even commutative matrix bialgebras

M(m|n)— M(m) ® M(n). (10)

In the above context of a graded commutative Hopf algebra coacting on a graded vector
spaceV we consider the dual spa¢& with a pairingV ® V* — C. It naturally becomes
a gradedH -comodule by the coactios Zj(—l)ljl'(‘j‘+|il)suji ® v} which leaves the
pairing invariant (with{v}} the dual basis t¢uv;}).

Assume now tha¥ andV* are isomorphic as gradedl-comodules viaamap: V* —
V with v} Zj nijv;. As n is bijective the inverse matrb;ij*l exists andyj = nij’l =0
for |i] # |j| as it is graded. The fact thatis a comodule map implies that the elements
Sujj of H can be written in terms of the; as

Suj = > (=D g, a
k.l

This in turn implies the relations

mal = (=D D g, (12)
iJ
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ng'l= Z(—l)li"(lilﬂk')uljukmij_l (13)
L]
by the defining property of the antipode.

Conversely, we can construct a graded Hopf algebra by demanding it to be the universal
graded Hopf algebra with coaction dhsuch thatp is a graded comodule map. This is
analogous to constructing a matrix group that leaves a non-degenerate bilinear form on its
defining representation (which can be seen as an isomorphism to the dual representation)
invariant.

Proposition 6.23. Letn; be an invertible matrix such thafj = 0if |i| # |j|. Consider

the graded commutative bialgebk(m|n) and impose the relationd2) and (13) They

are compatible with the coalgebra structure so that we obtain again a graded commutative
bialgebralnv, (m|n). FurthermoreInv, (m|n) is a graded Hopf algebra with antipode given

by (11).

Example 6.24. Letr, s be natural numbers. Define an invertible matjxof rank 2 + s
by

n2i-12 =1, maizic1=—1 forief{l, ... ,r},

njj=1 for je{m+1,...,m+n}

and all other entries zero. The graded commutative Hopf algelya2r|s) is called the
ortho-symplectic supergroupSp(2r|s). Its even commutative quotient is

OSp2r|s)— Sp(2r) ® O(s).

Example 6.25. OSp(2|1) is the matrix super-bialgebM (2|1) with additional relations

u13up3 — uzuzp =0, 2uzouzy + uzzusz =1,
U122 — u12u21 + usu3z = 1, —uy1u32 + uiouszy + u13uzz = 0,
—u21u32 + upou3z1 + uz3uzz = 0, upou13 — U123 — uzou33z =0,

—up1u13 + u11u23 + uzuzz = 0.

It has an antipode given by

Uil U12 U3 U2  —U12 —U32
S| up1 uz2 wupz | =\ —u21 w11 uz;
U3l U3z U33 up3 —uU13  U33

Let us now consider the corresponding quantum groups (i.e., cotriangular Hopf algebras).
According toTheorem 3.%ndProposition 3.1@he cotriangular bialgebra with the same
representation category &(m|n) is the bosonizatioM(m|n) x Z5. It is generated by
M(m|n) andZ,, as an algebra with cross-relatiags; = (—1)1*1/lu;;¢ and has coproduct

Aujj = Zuikglkmj' ® uyj, Ag=g®g.
k
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If we want to consideM(m|n) x Z, as a symmetry of a quantum field theory with
Bose—Fermi statistics we need to perform the spin—statistics redustotign 4 Definition

4.5) in order to eliminate representations with the wrong spin—statistics relation. In fact,
this is already suggested by our construction. The fact that the vector $phesm

odd andn even basis vectors and not the other way round is “forgotten” by the super
matrix-bialgebraM(m|n) as M(m|n) = M(n|m). However, writing the coaction of the
bosonizatiorM(m|n) x Z, on'V we find

v,-n—)Zuijgljl(X)vj. (14)
J

This suggest that we should in the commutative quo(iEdtinterpretM(m) as generating
the spin. Ther(14) precisely reflects the fact th&t has the right spin—statistics relation.
Conversely, the spin-statistics reduction\dfm|n) x Z; is given by its sub-bialgebra
generated by gl/!.

Apart from the physical motivation, we can also motivate this reduction purely mathe-
matically by demanding that we want to consider the universal object coactiig on

Proposition 6.26. The spin—statistics reductidd’(m|n) of M(m|n) x Z/ is given by its
sub-bialgebra generated by the elemefjts= uing'. Explicitly, it is generated by the
matrix coalgebréa(zjj} with relations given by the cotriangular structure

Rt ® ta) = (—=1)1¥ 858
Explicitly,

tijta = (= DI gy
It has a commutative quotient

M’ (m|n)— M’ (m) ® M(n)

by tj — 0 for |i] # |j|. This is a map of cotriangular bialgebras whek# (m) has
cotriangular structurg9) andM(n) has trivial cotriangular structure. Furthermord is a
(bialgebrg superextension in the senselsfinition 6.12

Note that choosing the “wrong” spin—statistics relation also yields a sub-bialgebra of
M(m|n) x Z,, which is generated bjujjg/I*1}. It is isomorphic taM' (n|m).

Let us now consider the spin—statistics reduction of the bosonization of a graded Hopf
algebranv, (m|n) x Z, that leaves an isomorphism: V* — V invariant. In fact, instead
of constructing firstnv,, (m|n) and then its spin—statistics reduction we can proceed directly.
Thus, the dual spacg* carries naturally a coactiorf Zj Sii ® vj.‘ in terms of the
antipode. Now, an isomorphism: V* — V as above implies for the antipode

Stj = Y ikt (15)
Kl
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and thus the relations
mal= > nititi. (16)
i,j

Tlﬁll = Z hj tkmij_l. 17)
i,j

Alternatively, these are obtained frofhl)—(13)by usingujj = fjj ¢! and the commutation
relation withg in M(m|n) x Z.

Proposition 6.27. Letn; be an invertible matrix such thafj = 0if |i| # |j|. Consider

the cotriangular bialgebraM’ (m|n) and impose the relationd6) and (17)They are com-
patible with the coalgebra structure and cotriangular structure so that we obtain again a
cotriangular bialgebralnvj7 (m|n). Furthermore Invj7 (m|n) is a cotriangular Hopf algebra
with antipode given byl1).

We denote the cotriangular Hopf algebra version of the ortho-symplectic supergroup by
OSp’'(2r|s). Its commutative quotient gives rise to the superextension
oSsp’(2r|s)— Sp’(2r) ® O(s). (18)

Thus, physically, the spin is attached to the symplectic g®pi[627). Note however, that
we can construct a second vers@8p” (2r|s) based oM’ (s|2r) which has a commutative
quotient

OSp”(2r|s)— Sp(2r) @ O'(s).

In this case the spin is attached to the orthogonal gfoip).

Example 6.28. OSp’(2|1) is the cotriangular matrix bialgebrd’(2|1) with additional
relations

113123 + t31t32 = 0, 2131132 + t33t33 = 1, t1tpo — t1oto1 + 13tz = 1,
11132 — t12t31 + 113133 = 0, 121132 — 122131 + t23t33 = 0,
t20113 — 112123 + taot3z = 0, 21113 — 111123 + t31t33 = 0.

Its antipode is given by

11 f12 113 f22 —h2 132
S| t1 t2 o3| =|-tar t1 —ta
131 132 133 23 —Nn3 133

Example6.29. Considerthe quantum homogeneous space given:i@Sp’(2|1)— U’ (1).
This is another version of the super-sphere (268 which we call theOS2|1) super-
sphere. Herey is defined as the composition of the extension r(ig) with id ® ¢ and
subsequently witl8). A set of generators of this subalgel84! of OSp’(2|1) is given by
{ti3, t;1t;2}. (The relations are as ixample 6.29



326 R. Oeckl/Journal of Geometry and Physics 44 (2002) 299-330

Analogous toExample 6.21we can view(OSp'(2|1), S?1, U’(1)) as the spin-bundle
overS21,

For example super-Anti-de-Sitter space can be constructed precisely in this way. As
Anti-de-Sitter space is the homogeneous spacé3S8)/SO(3, 1) we pass to the spin
groups Spi3, 2)/Spin(3, 1), where Spiti3, 2) = Sp(4). Then we consider the “physical”
quantum groupssp’(4)— Spin’(3, 1) and the superextensidDSp’(4|1)— Sp’(4). The
corresponding superextension of Anti-de-Sitter space is thus the quantum homogeneous
space0Sp’ (4|1)SP'@.

6.4. The super-Poincaré group

In this section, we consider the standard super-Poincaré group which is yet another type
of superextension. Its presentation here in the quantum geometric framework has some
novel aspects (in particular, the consideration of the “physical” quantum group version).

Recall the context dExample 3.12We start with the proper quantum mechanical version
of the Lorentz grougspin(3, 1) which is equipped with the cotriangular structiResj ®
i) = —dij (same if one or both carry a bar) of Bose—Fermi statistics (s&ction 4.]
and which we denote b8pin’(3, 1). Correspondingly, the quantum mechanical Poincaré
group is the quantum grougoinc’ = Mink x Spin’(3, 1). Dually, we considet/’(s03 1)
andi/’ (poinc) (seeExamples 3.13 and 4.4

We are now ready to construct superextensions. We start by considering the four-
dimensional comodule @pin’(3, 1) with basis{6,, 6_, 6., 6_} and left coaction in the
obvious way. It gives rise to a braided commutative comodule Hopf alg@iras in
Proposition 6.15Dually we can consider a four-dimensional modulé/6fses 1) with ba-
sis{Q+, O_, 04, 0_} and action given as ilBxample 6.19We can view it as the envelope
U(was) of the “abelian” super-Lie algebray with the Q’s forming its basis (i.e.0;Q; =
—Q;0;). Both give immediately rise to semidirect superextensiéasx Spin’(3, 1)
and U(ws) x U'(s031). Furthermore, by the induced coaction Pdinc’, respectively,
the induced action o/’ (poinc) we obtain semidirect superextensiafs x Poinc’ and
U(wa) x U’ (poinc).

However, the usual Poincaré super-Lie algebra and supergroup are obtained as follows.

Example 6.30. Consider the graded commutati®&pin’(3, 1)-comodule Hopf algebra
SMink built on the tensor produdilink ® @4 and defined as follows. It has the tensor
product algebra structure and the coalgebra structure @&fand

A)CM=xM®1+1®XM+Zé,’O'i]#®9j+Z@i5i#®9—j.
i,Jj i,j

onx*. The antipode is given byés= —6; and S* = —x*.

SMink is precisely (the algebra of functions on) the super-translation group. The super-
Poincaré group is now obtained analogous to the ordinary one, namely as the bosonizat-
ionSPoinc’ = SMinkx Spin’(3, 1). Explicitly, itis generated as an algebrafly. ;, x*, 6,
6+}. Ithasthe relationd6; = —6;6; ands;fjx = —tj6; and all other relations commutative.
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It has the matrix coalgebra structure Brwhile for x* andg; it is given by

AG =01+ 4 ®0;,
J
AxtF =xF @1+ ZA’“’ Qx" + Zéidijytjk ® O + Z9i5ifﬁk ® 0.
v i,j.k i,j.k

Note thatSMink is at the same time a quantum homogeneous spaceR@eark 6.4
and carries a left coaction &Poinc’ as an algebra by construction. It is thus nothing but
super-Minkowski space and gives rise to a quantum principal bu@Reinc’, SMink,
Spin’(3, 1)) which we can view as its spin-bundle (see the remarl&diamples 6.21 and
6.29.

In fact, SMink can be viewed as a braided cocycle extension
©4 — SMink— Mink (29)

(in the category oBpin’ (3, 1)-comodules) with the injection and surjection defined in the
obvious ways. The cocycMink — ©4 ® ®4 which determines the extension is given by
x> Y biof ®0; + Y 6i5f ®0;. (20)

ij ij
For details of the relevant Hopf algebra extension theory we refer the reafigr {@he
generalization to th&,-grading is straightforward in the present case.)

We can equally utilize the enveloping algebra picture. The sequé®ybecomes after
dualization and restriction to the (super) Lie algebras

trg — strg— wg.

Now strg is a central (graded) extension®f by trs. Here, the action di’(s03,1) on w4

is given as inExample 6.19with the same action for the barred generators and the action
between barred and un-barred generators zero. The extension is determined by the graded
cocyclews ® wg — trg given by

Q,' ® Qj = ZZO'ifLPM.
"
This is the familiar way to look at the super-translation Lie algelrp see, e.gj21]. The

enveloping Hopf algebra version of this is precisely the dué20fand lives in the category
of U’ (s03,1)-modules.

Example 6.31. strs is theld’(so3 1)-module super-Lie algebra built on the spaged trs
with bracket

{01, Qj} =2 of'P¥,
"

and all brackets involving®# vanishing. The ordinary super-Poincaré Lie algebra is now
the semidirect producitts x s03 1. However, the proper quantum group (determining the



328 R. Oeckl/Journal of Geometry and Physics 44 (2002) 299-330

physical symmetries) is the “enveloping” Hopf algebfdspoinc) := U(strg) x U’ (s03.1).
Note that it differs fromif(str4 x s03 1) which can be constructed as a graded enveloping
Hopf algebra in that it takes into account the spin—statistics relation as explained above.
The cross-relations betwe¢h, F, H} and{QL} are as inExample 6.1%nd extended to
the barred generators in the obvious way. The coproducts for all generators are primitive,
exceptforAQ; = 0, ®1+ & ® Q;.

Due toLemma 3.11SPoinc’ andi/’ (spoinc) are dual (co)triangular Hopf algebras. This
induces a natural quantum tangent space which can be identifiecspuitinc (i.e., it is
the smallest quantum tangent space that containg). The derivatives are the ones of
Example 6.1kupplemented by

O (0x) = +bx,  9g0x) =+bx, O =6-,  9z(04) =0-,
IpO-) =04,  p0-) =04,  do,(0)) =&, 35,0 =i,
00, (") =D 610, g, =D a6,

J J

All other derivatives of generators vanish.

7. Conclusions and outlook

We have exhibited here a categorical point of view on quantum field theory yielding
a generalized notion of symmetry based on quantum groups and braided categories. This
is motivated by the observation that rather than symmetry groups themselves, only their
representation categories are operationally relevant in quantum field theory. The resulting
framework unifies the concepts of conventional symmetry and exchange statistics (as was
already noticed ifi6]). We have shown how (super)group symmetry, Bose—Fermi statistics
and the spin—statistics relation are interconnected in a three-layer structure that recovers the
generalized quantum group symmetry of quantum field theory.

Rephrasing the old question of non-trivially extending space—time symmetries in the
new framework naturally leads to supersymmetry (assuming Bose—Fermi statistics). Fur-
thermore, we were able to show that (in this framework) supersymmetry is indeed the most
general way of unifying external and internal symmetries. Even if we drop the non-triviality
condition only group symmetries and supersymmetries are allowed. This appears to be a
no-go theorem for “hidden” (non-triangular) quantum group symmetries in physically in-
teresting theories such as the standard model.

However, this has to be interpreted with care. A crucial ingredient in our formulation is the
condition that the quantum group which extends the given space—time—statistics quantum
group does not modify the statistics. (That is, the cotriangular structure is preserved by the
extension.) We see this as a natural constituent of the extension problem (and it is implicit
in its conventional formulation). For example, it would be conceivable that there exist
multiplets of states with braid statistics of which so far only (bosonic or fermionic) singlets
have been observed. But as this goes in a sense beyond ordinary quantum field theory it
also goes beyond our formulation of the extension problem. Furthermore, the braiding is
defined for all objects in the relevant category while not all of them can be necessarily
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interpreted as being subject to some exchange statistics in the conventional sense. It is thus
conceivable that the braiding can have a broader meaning in general and just reduce on the
relevant objects to the conventional statistics. This would also leave open the possibility for
non-triangular quantum group symmetries.

We have also seen that for theories with non-symmetric braid statistics (e.g., anyonic in
two spatial dimensions), the separation between the conventional notions of symmetry and
statistics can no longer be retained (see the eri@kofion 2.Jand the beginning dbection
4.3). Only the generalized notion of quantum group symmetry remains applicable. Itis thus
no surprise that (non-triangular) quantum groups are indeed employed in the construction
of fractional supersymmetry (which implies non-symmetric braid statigtids} 2]

Finally, we mention that there is a generalization of quantum field tHe&fyo precisely
the categorical framework (braided categories) we outligeiction 2. 1This naturally takes
in quantum group symmetries and for the proper Poincaré quantum group reconstructed
in Section 4.lyields automatically the correct differences for path integrals and Feynman
rules between bosons and fermid@$. In this context the present paper clarifies how
supersymmetric theories would have to be constructed in this framework (namely through
their proper quantum group versions considered here). Furthermoreg @leformations
of supersymmetries (of which some examples have been considered in the literature, see,
e.g.[8]) can thus be employed. Asdeformation has been proven to be a potential regulator
of quantum field theory22] this yields the prospect of a (notoriously difficult) covariant
regularization of supersymmetric theories.
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